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October 10, 2023

University of Technology Sydney

 



Assignments

• problem set 3 is due today

• please let me know if you didn’t get an email from me about giving

feedback on other videos

• pick your final project topics!
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Today

• Hamiltonian simulations - finish

• Ground state preparation

• Grover search and its generalizations

• Quantum complexity

• BQP and QMA complete problems
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The first simulation algorithm

For a finite t/r :
���e(A+B)t
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For a Hamiltonian H =
P

m

j=1 Hj , one can decompose the evolution with

respect to H into the evolution with respect to each Hj as

eU =
⇣
e�iH1t/re�iH2t/r . . . e�iHmt/r

⌘r

+O(kHk t2/r).
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How to simulate each term

Are there any Hamiltonians that are very easy to simulate?

e�itZ = e�it
|0i h0|+ e it |1i h1|

Evolution with respect to Pauli-Z is a simple single qubit gate.
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Exercise

• Prove that U†e�iHtU = e�iU
†
HUt .

• What operation does CNOT (I⌦ Z )CNOT perform?
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Tensor product of Zs

H = Z1 ⌦ Z2 ⌦ · · ·⌦ Zn.

• •

• •
...

. ...
• •

e�itZ
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What about other Paulis?

X = Had Z Had

Y = S Had Z Had S†

Had • • Had

S Had • • Had S†

e�itZ
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Putting it all together

Hamiltonian H =
P

L

l=1 ↵lPl where Pl are Paulis on at most n qubits

Each e�i↵l Pl t can be simulated with O(n) gates for any ↵l and t.

Using the lowest order product formula we get algorithm with complexity

O
�
↵t2n✏�1

�
where ↵ =

P
l
|↵l |.
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Eigenenergy Estimation

Goal: compute the ground state energy of a molecule

prepare an ansatz

a version

of phase

estimation

Hamiltonian

simulation
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Computing ground states of physical systems

Consider a molecule that is too complex to compute the ground state

exactly (as in assignment 2) and chemists have an approximation that

gives us an upper bound on the ground state energy. This approximation

allows us to construct a state with low energy (but not eigenstate), that

has at least 1/poly(n) overlap with the ground state. Also,

approximation techniques do not allow us to compute the ground state

precisely enough (often up to chemical precision).

Then, eigenstate estimation + Hamiltonian simulation can give us an

”exponential” speedup for computing the ground state energy.
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Applications

The assumption of a good ansatz is not strictly scalable but there are a

lot of molecules where these assumptions are believed to be trough. More

advanced techniques (Hamiltonian simulation + chemistry) allow us to

compute the ground states with a few thousand logical qubits for a few

molecules/materials that are not known classically up to the required

precision.
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Examples
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The search problem

For N = 2n, we are given a marked item w 2 ZN

2 , and the goal is to

locate w .

The classical solution is easy to see. In the worse case, the algorithm has

to check all N items in order to find x .
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Quantum algorithm

Oracle UG so that

UG |xi =

8
><

>:

� |xi , if x = w

|xi , otherwise
.

The oracle can be expressed as

UG = I � 2 |wihw | . (1)

Operation with gates only form a di↵usion operator:

Ud = 2 |sihs|� I ,

where

|si =
1

p
N

N�1X

i=0

|ii .
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|0i H

Ug Ud

. . .

Ug Ud

|0i H . . .

...

|0i H . . .

|0i H . . .

Figure 1: Grover’s algorithm
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First step

Denote
��w?↵ = 1p

N�1

P
x 6=w |xi.

One can see that the uniform superposition state |si at the step t1 can

be decomposed into |si =
q

1
N
|wi+

q
N�1
N

��w?↵ , and the angle ✓ in

corresponds to sin ✓ =
q

1
N
, cos ✓ =

q
N�1
N
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2 dimensional subspace

Our Hilbert space is N-dimensional, HOWEVER, following Grover’s steps,

we will stay in a subspace spanned by |wi ,
��w?↵. Furthermore, we will

only need to consider a real, linear combination of |wi and
��w?↵.

Optional: you can show that span{|wi ,
��w?↵

} is closed under Ug , Ud .
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Oracle

Application of UG leads to

UG |si = �

r
1

N
|wi+

r
N � 1

N

��w?↵

= � sin ✓ |wi+ cos ✓
��w?↵ .

Geometrically, the oracle UG reflects the vector |si along the axis
��w?↵.
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Geometric interpretation
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Di↵usion operator

Application of Ud at the third step t3 to Eq. (2) is equivalent to reflect

the state UG |si along the axis |si. Therefore,

UdUG |si = sin 3✓ |wi+ cos 3✓
��w?↵ .
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After k steps

By induction,

(UdUG)
k
|si = sin[(2k + 1)✓] |wi+ cos[(2k + 1)✓]

��w?↵ .

If we measure after k iterations, the probability of obtaining the target

element w is

pk := Pr{w appears} = sin2((2k + 1)✓).

If we choose k = ⇡
4✓ �

1
2 , then we get the state |wi with certainty

because pk = 1. Since arcsin ✓ � ✓, then

k̃ 
⇡

4✓
=
⇡

4

p

N = O(
p

N).
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Grover conclusion

If we continue rotating past ⇡
4

p
N steps, the amplitude on the good step

decreases but there are modifications of the algorithm that overcome this

issue.

It can be proven that Grover’s algorithm is asymptotically optimal.
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Grover is not for database search

Grover is formulated as an oracular speedup.

When can we the oracle actually implement and still keep a speedup?

Converting an entire database into an oracle is not e�cient, the

algorithm would be slower than classical search.
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Grover as commuting preimage

Assume a function f : x ! {0, 1}. Find an x such that f (x) = 1.

The oracle UG only needs to implement function f . Useful when f is easy

to compute but does not have structure.

Asymptotic speedup for optimization problems, e.g. find a route shorter

than m.
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Example: Travelling salesman problem (TSP)

x - route on the graph

f (x) = 1 i↵ the route is shorter than 100
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How useful are Grover-like speedups?

Given the overheads for compilation and error correction, quadratic

speedups are not su�cient for a quantum advantage in the foreseeable

future.
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Generalization of Grover - amplitude amplification

In Grover, the Hadamard transform gave us

H⌦n
|0 . . . 0i =

r
1

N
|wi+

r
N � 1

N

��w?↵ (2)

Assume that we have an operator V that prepares the good state |wi

with some amplitude ↵

V |0 . . . 0i = ↵ |wi+
p
1� |↵|2

��w?↵ (3)

we can repeat Grover-like like steps to prepare |wi using V ,V † and UG .
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Turing machines

Figure 2: Turing machine

deterministic TM:

probabilistic TM:

non-deterministic TM: 28
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Non-determinism

the transition function allows multiple possible actions for any

configuration
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Example: sort
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Complexity classes

problems that can be solved on a deterministic Turing machine within a

certain resource contain

Time-restricted:
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PSPACE

We can constrain the space a TM can use
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Figure 3: Selected complexity classes and the relationships between them.

Some subsets might not be strict.
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Complete and hard problems

(NP)-hard

(NP)-complete
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BQP

Let A = (Ayes ,Ano) be a promise problem and let c , s : N ! [0, 1] be

functions. Then

A 2 BQP(c , s) if and only if there exists a polynomial-time uniform

family of quantum circuits Qn : n 2 N, where Qn takes n qubits as input

and outputs 1 bit, such that

if x 2 Ayes then Pr[Q|x|(x) = 1] � c(|x |), and

if x 2 Ano then Pr [Q|x|(x) = 1]  s(|x |).

The class BQP is defined as BQP = BQP(2/3, 1/3).
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BQP

Problems solved e�ciently on a quantum computer

BQP-complete problems
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Quantum analogue of NP
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QMA

Let A = (Ayes ,Ano) be a promise problem and let c , s : N ! [0, 1] be

functions. Then A 2 QMA(c , s) if and only if there exists a

polynomial-time uniform family of quantum circuits {Qn : n 2 N}, where

Qn takes p(n) qubits as input for some polynomial p and outputs 1 bit,

such that

• (Completeness) if x 2 Ayes then there exists an p(n)-qubit state | i

such that Pr
⇥
Qn(x , | i) = 1

⇤
� c(n)), and

• (Soundness) if x 2 Ano then for all p(n)-qubit state | i,

Pr
⇥
Qn(x , | i) = 1

⇤
 s(n).

The class QMA is defined as QMA(2/3,1/3).
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QMA complete problems

k-local Hamiltonian problem:

A k-local Hamiltonian H is a summation H =
P

m

j=1 Hj of local terms Hj

acting on at most k qubits (out of n qubits). The k-local Hamiltonian

problem is the promise problem with

Input: (H, a, b) where H is a k-local Hamiltonian, a, b are real numbers

such that b � a � 1/poly(n),

Yes instances: The smallest eigenvalue of H is at most a,

No instances: The smallest eigenvalue of H is at least b.

For k � 2, the local Hamiltonian problem is QMA complete.
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Quantum classes

Figure 4: Quantum complexity classes in relation to P and NP. Source:

Schuch and Verstraete

40

QUI complete

solution can be

verified on a

quantum
cNIplete solutions computer

checked
IFically

problems complete
solvable

e

BQ

oh a

quantum
solved
classically computer



There is more!

UTS algorithms class

Complexity ZOO
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