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e problem set 3 is due today

e please let me know if you didn't get an email from me about giving

feedback on other videos

e pick your final project topics!



e Hamiltonian simulations - finish
e Ground state preparation
e Grover search and its generalizations

e Quantum complexity

e BQP and QMA complete problems
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The first simulation algorithm

Tro+ierization
cO (f—)

For a Hamiltonian H = ijz1 H;, one can decompose the evolution with

For a finite t/r: He“”Bﬁ — (eAt/reBt/r)r

respect to H into the evolution with respect to each H; as oo
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How to simulate each term

Are there any Hamiltonians that are very easy to simulate?
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Evolution with respect to Pauli-Z is a simple single qubit gate.
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Exercise

Solved  last +im
(3)e Prove that UTe ™ty = e—iUTHUt

b) e What operation does CNOT (I ® Z) CNOT perform?
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Tensor product of Zs
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What about other Paulis?
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Putting it all together

Hamiltonian H = Z/L:1 oy P; where P, are Paulis on at most n qubits
Each e Pt can be simulated with O(n) gates for any o and t.

Using the lowest order product formula we get algorithm with complexity

O (at?ne t) where a =Y, |ay|. “PQ.“: ’1
‘\‘\‘Ox"\-Q\"\}(/\-\-{ov\ + Poauw 1(—5‘\?\‘0\2 Q\IO‘U\'HOV]
I S >
..qig‘m% &\' ‘VWV\SVQVSQ\ vy - C

we wemt claoical

= oM 5PN wo oA /WMWQ‘., ~
=) %m*w %CW\(SH-?[ I 2ndl %a/\nﬁm«ho»)
Complexity com be belter witlh o §. algordhmg




Eigenenergy Estimation
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Goal: compute theground state energy of a molecule
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Computing ground states of physical systems

Consider a molecule that is too complex to compute the ground state

we exactly (as in assignment 2) and chemists have an approximation that

IVes us an er bound on the ground state energy. This approximation
dfah g /%PP g gy PP

\Callows us to Eonstructiastatéwith/lowenerfgy (but not eigenstate), that

MR has at least 1/poly(n) loverlapiwith the grotnd state: Also,

s
o~ ) approximation techniques do not allow us to compute the ground state

3‘;\2 precisely enough (often up to chemical precision).

Then, eigenstate estimation + Hamiltonian simulation can give us an

"exponential” speedup for computing the ground state energy.

- we cn Yun QPE + Ham. sim. Q":-(;CC\‘M\,'HB.
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Applications

The assumption of a good ansatz is not strictly scalable but there are a
lot of molecules where these assumptions are believed to be More
advanced techniques (Hamiltonian simulation + chemistry) allow us to
compute the ground states with a few thousand logical qubits for a few
molecules/materials that are not known classically up to the required

precision.

11



V\;"‘\'ccaq,v\ Liyation - conve,r-\-?ué Ny, ‘uto MH$

@:% @%@

\ u b\'emk%mg W\{S
-0 ‘ Lot ot
\O\ reo’uwes A
' meg
( i?L %‘3’
DLt miaees FeMoco plays part
piological Wkrogm < we Should be dble

Llxankion -can't reproducl ‘o Compnte Ws %rou\mc\
n alab A Stake  on o quamfiin computer



The search problem

For N = 2", we are given a marked item w & ZQ’, and the goal is to

locate w.

The classical solution is easy to see. In the worse case, the algorithm has

to check all NV items in order to find §.W/

optimal O(NV)

loracle! — o procodvw gt when
presembed with an  (+2Un

fYels vow i+ %« monked
OY MNo+t

13



Quantum algorithm

\ C
Oracle Ug so that \Hem -#:G‘Q’ UG all
)
]\/ x), ifx=w
Ug |x) = <
\ |x) , otherwise

The oracle can be expressed as

Us =2 |w)w]|. (1)
wsing omcle

Operation with gates only form a diffusion operator: Calls + 80\'\-2'5

2exo Ug = 2|sXs| —
ofacle
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Ua =7 i ~umiforwn sy ps position
=0

14



A step

H
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Figure 1: Grover's algorithm
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First step
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One can see that the uniform superposition state |s) at the step t; can

be decomposed into||s) = \/>\w ) 4 4/ DL ‘w , and the angle 6 in

o 1
corresponds to sinf = \/; cosf = /ML m wenked
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2 dimensional subspace

R = spaniix>]
Our Hilbert space is N-dimensional, HOWEVER, following Grover's steps,

we will stay in a subspace spanned by |w), |w=). Furthermore, we will

only need to consider a real, linear combination of |w) and |w).
all relevomt slatey can we
writien as

v = sin@Ilwd v cosPvw
for some Q& LOL)

Optional: you can show that span{|w), |w=)} is closed under Uy, Uy.
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Oracle

oroc\e Og lw? =l w? Ug! wh? =S iwh
Application of Ug leads to Ug | XLK-‘#WV (X7

Uls) = O & w2t

= E)inb|w) +cos<9]w ).

Geometrlcally7 the oracle Ug reflects the vector |s) along the axis |w).
W

15 ?

Wy

| \s,\?

18



Geometric interpretation
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Diffusion operator

Application of Uy at the third step t3 to Eq. (2) is equivalent to reflect

the state Ug |s) along the axis |s). Therefore,
UaUc |s) :sin30]w>+cos39‘wL>.
. A
Ud \547 = Ud \— $in © lw) +cos © (w ))
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After k steps

v
(UaUg)"|s) = sin[(2k + 1)6] |w) + cos[(2k + 1)0] |w™ ).

By induction,

If we measure after k iterations, the probability of obtaining the target
element w is t‘a.z:" close +o 1]

7)
/ Q-K*I)Q x-lT/a
pr := Pr{w appears} = sin*((2k + 1)9).

| /a'
If we choose k= & = 7, then we get the state |w) with certainty
: 1,_\.
because p, = 1. Since arcsin > 0, then Siy 0=Vw
. : x, 4, A
%0\0\\'0&\(‘/ ~ T SO0 N
k<-—=="vVN=O(N)
Spee duwP 40 4
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Grover conclusion

If we continue rotating past 7 v N steps, the amplitude on the good step

decreases but there are modifications of the algorithm that overcome this

Issue.

It can be proven that Grover's algorithm is asymptotically optimal.
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Grover is not for database search

Grover is formulated as an oracular speedup.
When can we the oracle actually implement and still keep a speedup?

Converting an entire database into an oracle is not efficient, the

algorithm would be slower than classical search.
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Grover as commuting preimage

Assume a function f : x — {0,1}. Find an x such that f(x) = 1.

The oracle Ug only needs to implement function f. Useful when f is easy

to compute but does not have structure.

Asymptotic speedup for optimization problems, e.g. find a route shorter

I+ you. com eou):lb
.c Com pute 'cl we o
tmplement Ug

d

than m.

S o
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Example: Travelling salesman problem (TSP)

A B )
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30 35
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x - route on the graph 08
= U ved route

f(x) = 1 iff the route is shorter than 100 not w\wu:ed

—— is
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How useful are Grover-like speedups?

Given the overheads for compilation and error correction, quadratic

speedups are not sufficient for a quantum advantage in the foreseeable

future.
Source.: Go°3 3
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Generalization of Grover - amplitude amplification

In Grover, the Hadamard transform gave us O\MP‘”uCLL on \W>

H®”|O...O>:\/%\w>+\/%]wﬂ (2)

Assume that we have an operator V that prepares the good state |w)

%ooc‘ slate
A
V1]0...0) = a|w) + /1 — |a]? |w) (3)

with some amplitude o

we can repeat Grover-like like steps to prepare |w) using V, VT and Ug.

AA + other algori¥hm Haat tmplements
V
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Turing machines

Figure 2: Turing machine
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Non-determinism

the transition function allows multiple possible actions for any

configuration
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Complexity classes

problems that can be solved on a deterministic Turing machine within a

certain resource contain
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PSPACE

We can constrain the space a TM can use
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Figure 3: Selected complexity classes and the relationships between them.

Some subsets might not be strict.
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Complete and hard problems
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BQP

- c\age of Problewms Wark com be solved on o qmow\!-wm compauter
w pol mw\\ wmer

Let A = (Ayes, Ano) be a promise problem and let ¢,s : N — [0, 1] be

functions. Then

A € BQP(c,s) if and only if there exists a polynomial-time uniform

family of quantum circuits Q, : n € N, where @, takes n qubits as input

and outputs 1 bit, such that [
H ‘Isiwca oW

if x € Ayes then Pr[Qy(x) = 1] > ¢(|x]), and n qubits
promise
K

i X € Ano then Pr[Qu(x) = 1] < s(|x]). L <pinise

QWVen oo
The class BQP is defined as BQP = BQP(2/3,1/3). GUom
o e { - _[Fl- measwn. | civasit fox IV
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BQP

Problems solved efficiently on a quantum computer
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Quantum analogue of NP
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. y A
Let A= (Ayes, Ano) be a promise problem and let'c,s : N — [0, 1] be
functions. Then A € QMA(c, s) if and only if there exists a
polynomial-time uniform family of quantum circuits {Q, : n € N}, where
Q. takes p(n) qubits as input for some polynomial p and outputs 1 bit,

such that

o (Completeness) if x € A,es then there exists an p(n)-qubit state |1))
such that Pr{Qn(x,[¢)) = 1] > ¢(n)), and

e (Soundness) if x € A, then for all p(n)-qubit state |1)),
Pr{Qn(x, 1)) = 1] < s(n).
The class QMA is defined as QMA(2/3,1/3).

Q\“\L CWP\Q‘\'Q, pro\)\QW\S N\ w“\ipe“a, 19 he Sa‘VQD‘
Q(—-L‘\c\m-\-\ta ogN ov %WV\\»WW\ CC""Y\PV\"«&V‘, 38



QMA complete problems

D
k-local Hamiltonian problem: N s * Uopt M * Uon
k2L =“? m:b6 %52

A k-local Hamiltonian H is a summation H = ijzl H; of local terms H,
acting on at most k qubits (out of n qubits). The k-local Hamiltonian

problem is the promise problem with

Input: (H, a, b) where H is a k-local Hamiltonian, a, b are real numbers

Daci:\uc?ft] th\j\'to[\i\ewi = 1pelin) Jav a P IP°\3‘“)
(/\\ Yes instances: The smallest eigenvalue of H is at most a, —
= -INo
(03 No instances: The smallest eigenvalue of H is at least b. :"""-

For k > 2, the local Hamiltonian problem is QMA complete. i
Promise: wa, We. Cannot m\Wo\\|5 Line b ——
nevers — growmd States on o au":
see o — PFAMNY W Computey | — Yes



Figure 4: Quantum complexity classes in relation to P and NP. Source:

Schuch and Verstraete
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There is more!

UTS algorithms class

Complexity ZOO
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