
41076: Methods in Quantum Computing

‘Quantum Algorithms’ Module

Maria Kieferova based on materials from Min-Hsiu Hsieh
Centre for Quantum Software & Information, Faculty of Engineering and Information Technology,

University of Technology Sydney

Abstract

Contents to be covered in these two lectures are

1. Complexity of an algorithm

2. Phase kickback

3. Hadamard transform

4. Fourier Transform Algorithm

5. Phase Estimation

6. Hamiltonian simulation and ground state preparation

7. Grover search and its optimality

1 What makes a good algorithm

To understand how to analyze and design quantum algorithms, we first need to talk about general
concepts in algorithm design. An algorithm can be thought of as a recipe for a computer to compute
a function, i.e. compute an output for each input from a set of allowed inputs. We might require
that the algorithm always produces the correct output. We say that an algorithm is sound if
it never returns a wrong solution, say an incorrectly sorted list, a wrong solution to arithmetic
operations or a sub-optimal solution. An algorithm is complete if it gives an answer for any input.
An incomplete algorithm for cat/dog classification might not provide a label if the input is neither
a cat nor a dog picture.

There are notable types of algorithms that are not complete or sound:

• Many probabilistic/quantum algorithms give the correct answer with a high probability (say,
in at least 2/3 cases) but might fail. The probability of success can be boosted by repeated
runs. Examples included adiabatic phases estimation, Grover search, adiabatic algorithms
(with long evolution time), random walk search . . .

• Approximation algorithms are useful for optimization problems. Optimization problems
require finding maximum/minimum or a function on a given domain. An approximation
algorithm does not aim to achieve the best solution but produces a solution that is “close”. An
example for is Goemans-Williamson algorithm that is guaranteed to achieve approximation

1

ratio (defined as algorithm’s score
optimal score) of 0.868 for MAX-CUT. Some algorithms come with rigorous

guarantees for the quality of the approximation, others, such as simulated annealing, are
guaranteed to produce the optimal solution if run indefinitely.

• Some algorithms perform well only on a subset of inputs. An example would be machine
algorithms, for example, ML approaches to k-means clustering, that would be inefficient on
general problems but perform well on problems with some structure. A formal way to restrict
the set of inputs is to define a promise problem which guarantees additional properties of
the input (as in the Deutsch-Jozsa algorithm).

Heuristic algorithms are a broad class of algorithms that trade speed for completeness, optimality
or precision that might be based on rigorous underlying theory or rule-of-thumb insights.

To analyze an algorithm, we consider the resources an algorithm needs. We call these consid-
erations computational complexity The most common consideration is the time the algorithm
needs to compute the output. The time is proportional to the number of operations the computer
needs to make during computation. We consider how the time needed grows with the size of the
input . This can be the number of bits of a number, the size of an array or a data set or the
number of particles in a quantum system. When talking about the dependence of the time on the
size of the input, we call this measure the time complexity or often only complexity.

We sometimes consider are space needed for computation known as space complexity. Optimiz-
ing algorithms for space is needed when one is dealing with limited memory and a limited number
of qubits. If we have a computational model that has the ability to execute multiple operations in
parallel, such as a node with many processors/GPU-s, we might consider the depth of an algorithm
instead. In practice, one might consider the dollar cost of computation which would depend on the
computational time as well as particularities of a machine used.

Let say that we agreed what is the metric that matters to us. How would we then evaluate the
performance of our algorithms? There are several approaches

• In theoretical computer science, the most common approach is computing the asymptotic
complexity. This is an upper bound on the amount of time one would need as a function of
input size in the limit of input size going to infinity. Computing the tight bound is generally
complicated but a good estimate in the big-O notation can be obtained for many algorithms.

• When an algorithm is too complicated to analyze rigorously or its performance can vary, it
is common to estimate its performance on benchmarks. An example would be standard
machine-learning or SAT competition. It is important to choose benchmarks similar to the
problems of practical importance and similar size. Choosing a benchmark that is too small
or simple can give a false sense of success that would not generalize to larger instances.

• Argue with everyone at conferences and on Twitter that your algorithm is the best. This is
common but not recommended.

Once we know the complexity of our algorithm, we can ask how good it is. The strongest
type of evidence would be an argument that it is not possible to construct an asymptotically
better algorithm, possibly subject to some complexity-theoretic assumptions. An example of such
algorithms is O(n log n) complexity sorts and Grover search. For these examples, the performance
of the algorithms matches the theoretical lower bound on what could be possible. An argument
that is still strong is showing that your algorithm is the fastest existing algorithm. Such an example

2

notation name example

O(1) constant computing (−1)n

O(log x) logarithmic binary search
O(x) linear classical unstructured search
O(x2) quadratic bubble sort, elementary-school multiplication, Dijkstra
O(xc) polynomial all of the above, linear programming, primality testing, shortest path on a graph
O(2x) exponential travelling salesman, generalized checkers
O(x!) factorial brute force try all possibilities algorithm

Figure 1: Common functions characterizing asymptotic complexity.

is Shor’s factoring algorithm which is asymptotically faster (polynomial vs. exponential). Since
factoring has been studied for centuries and Shor’s algorithm is the first efficient algorithm this
constitutes a major achievement. On the other hand, the QAOA algorithm has achieved the best
approximation ratio for the Max-3XOR problem, only to be outperformed a few weeks later. Of
course, you might not care about having the best algorithm according to the community. You might
only care about solving a particular problem, say computing properties of a complex molecule or
devising a super-secret strategy for trading derivatives and you only care that your algorithm
delivers a solution up to your (and your boss’s standard).

1.1 Big-O notation

Perhaps the most important measure of an algorithm is how its complexity grows as the size of
the input. Unfortunately, estimating the exact resources is almost always impossible - the exact
number of gates will depend on the gate set physical properties of a chip. To be able to devise and
compare algorithms that can run on many different chips, we focus only on the type of the growth
rate expressed using the big-O notation that characterizes the behaviour of complexity for the limit
x→∞.

Let f(x) : R → R be the exact complexity of an algorithm. The one can write

f(x) = O(g(x)) (1)

if there exist numbers x0 ∈ R and M ∈ R+ such that

|f(x)| ≤Mg(x) (2)

for all x > x0. When estimating the big-O complexity, it is useful to keep in mind the following
properties:

f1(x) = O(g1(x)) and f2(x) = O(g2(x)) =⇒ f1(x)f2(x) = O(g1(x)g2(x)) (3)

f1(x) = O(g1(x)) =⇒ f1(x)f2(x) = O(g1(x)f2(x)) (4)

f1(x) = O(g1(x)) and f2(x) = O(g2(x)) =⇒ f1(x) + f2(x) = O(max(g1(x), g2(x))) (5)

f1(x) = O(g1(x)) =⇒ const. · f1(x) = O(g1(x)) (6)

f1(x) = O(g1(x)) =⇒ const.+ f1(x) = O(g1(x)) (7)

Exercise 1. Practise the big-O formalism.

3

|x〉 • |x〉

|y〉 U |y ⊕ f(x)〉

Figure 2: Reversible oracle for a function f .

• Is 2n+1 = O(2n)?

• Is 22n = O(2n)?

• Compute the asymptotic upper bound on 2n+1 + 22n.

We say that an algorithm is efficient if its complexity is polynomial in input size as opposed to
exponential in any parameter. The class of all problems solvable in polynomial time on a classical
computer is known as P and BQP on a quantum computer.

1.2 Oracles

Apart from gates, it is possible to include oracles (sometimes also called black boxes) in computa-
tion. An oracle is an abstract operation that can perform a given computation in a unit of time. We
refer to the number of queries to the oracle as the query complexity. There are several reasons why
one wants to include oracles in an algorithm. An oracle can represent a separate computational
primitive whose implementation can vary. An example of such oracles are functions that compute
matrix elements of a Hamiltonian in Hamiltonian simulation.

An oracle can be given as a part of the definition of the problem. In this case, one can have
oracular access to a function, and our goal is to determine some properties of this function as in
Deutsch-Joza or Grover’s algorithms. Finally, oracles are often used in the theory of computational
complexity to quantify the difficulty of tasks. One can construct a hierarchy of computational
difficulty with respect to more and more powerful oracles.

2 Thinking about quantum algorithms

We often (but not always) think about quantum algorithms in terms of quantum circuits. Broadly
speaking, a quantum algorithm is a description of how to build a quantum circuit that produces
the desired output from the input for each size of the input. Thinking in terms of quantum circuits
is often tedious for more advanced algorithms and people often describe quantum algorithms in
terms of frameworks such as quantum walks or simulating sparse matrices. These concepts will be
explored with more depth in UTS class Quantum algorithms.

If we are given a quantum circuit, we can easily compute its various cost metrics such as the
number of operations and depth. Calculating an asymptotic complexity of a quantum algorithm is
similar to calculating the complexity of classical algorithms.

We learned in lecture one that any classical computation can be realized reversibly using Toffoli
gates. Since Toffoli gates can be (in principle) implemented on quantum computers, it means that
any classical computation can be implemented on a quantum computer as a quantum algorithm.
However, doing so would not produce any speedup - it would be likely slower (by a constant factor)
a more expensive. However, this highlights the point that an existence of a quantum algorithm
does not imply a speedup, which refutes the common misconception that quantum computing

4

•

•
•

Figure 3: A quantum circuit consists of wires (qubits, represented as horizontal lines) and gates (unitary operations,
represented as boxes). The space cost of this circuit is 8, the time cost is 17, and the depth is 7.

can exponentially speed up any computation. We have examples of algorithms, for example sorting,
that provably do not allow asymptotic quantum speedup.

3 Phase kickback

Exercise 2. Compute:

• CNOT |b〉 |0〉−|1〉√
2

for b ∈ {0, 1}. Hint: It will be useful to write 1 = (−1)0 and −1 = (−1)1.

• CNOT |0〉+|1〉√
2

|0〉−|1〉√
2

.

We can now see that if the target qubit is an eigenstate of X, CNOT will affect the control
qubit instead of the target one. A phase kickback is a clever trick that extends this observation
from a CNOT to an arbitrarily controlled gate. Let us take the oracle from 2 and apply it on
|y〉 = |0〉−|1〉√

2
. We will get:

Uf |x〉
|0〉 − |1〉√

2
=
Uf |x〉|0〉 − Uf |x〉|1〉√

2
(8)

=
|x〉|0⊕ f(x)〉 − |x〉|1⊕ f(x)〉√

2
. (9)

Without knowing the value of x, we still know that f(x) will be either 0 or 1.
Let us consider what happens for the options. For f(x) = 0 we get

|x〉|0⊕ 0〉 − |x〉|1⊕ 0〉√
2

=
|0〉 − |1〉√

2
(10)

and similarly f(x) = 1
|x〉|0⊕ 1〉 − |x〉|1⊕ 1〉√

2
= −|0〉 − |1〉√

2
(11)

will result in a global phase. We can both outcomes in a compact way

(−1)f(x)|x〉 |0〉 − |1〉√
2

(12)

5

|x〉 • (−1)f(x)|x〉
|0〉−|1〉√

2
U

|0〉−|1〉√
2

Figure 4: Phase kickback

.
This is known as the phase-kickback trick - it allows us to turn the output of the function f

into a (global) phase. To see why it can be useful, consider |x〉 = a|0〉 + b|1〉 to be an arbitrary
superposition. Using (12) we can compute

U(a|0〉+ b|1〉) |0〉 − |1〉√
2

= (−1)f(0)a|0〉 |0〉 − |1〉√
2

+ (−1)f(1)b|1〉 |0〉 − |1〉√
2

(13)

=
(

(−1)f(0)a|0〉+ (−1)f(1)b|1〉
)(|0〉 − |1〉√

2

)
. (14)

The action of the oracle is now entirely encoded in the phase of the first qubit and there is no
entanglement between registers.

An application of the phase kickback is Deutsch’s algorithm.

Exercise 3 (Deutsch’s problem). Consider an unknown function f(x) given through a coherent
oracle. Decide whether the function is constant f(0) = f(1) or balanced f(0) 6= f(1).

• Use the phase kickback trick for x = 0 and x = 1 on Deutsch’s problem. What is the outcome
for a constant and a balance function?

• Now consider |0〉 = |0〉+|1〉√
2

. What gate do you need to apply on the control register to read out

the solution in computational basis?

4 Hadamard transform

We saw that application of Hadamard was crucial in the previous algorithm. Applying Hadamard
on evry qubit is known as Hadamard transform. In the simplest case, we can apply Hadamards
on a number of qubits in each in state |0〉.

(H|0〉)⊗n =

(
|0〉+ |1〉√

2

)
⊗n = 2−n/2

2n−1∑
i=0

|i〉. (15)

Exercise 4. Expand
(
|0〉+|1〉√

2

)
⊗n to convince yourself that

(
|0〉+ |1〉√

2

)
⊗n = 2−n/2

2n−1∑
i=0

|i〉. (16)

How would you formally prove it?

6

We see that applying Hadamards will create a uniform superposition over all strings. What
happens when we apply Hadamard on an arbitrary input? First, notice that we can write an action
of a single Hadamard as

H|xi〉 =
|0〉+ (−1)x|1〉√

2
=

1∑
y=0

(−1)xi·y|y〉√
2

(17)

where xi ∈ {0, 1}. Let us now take x = x0x1 . . . xn−1 and apply Hadamard on this state. We obtain

H⊗n|x〉 =
1√
2n

∑
y

(−1)x·y|y〉, (18)

where x · y =
∑

i xiyi.

|xn−1〉 H
∑1

yn−1=0
(−1)xn−1·yn−1 |yn−1〉√

2

|xn−2〉 H
∑1

yn−2=0
(−1)xn−2·yn−2 |yn−2〉√

2

...

|x1〉 H
∑1

y1=0
(−1)x1·y1 |y1〉√

2

|x0〉 H
∑1

y0=0
(−1)x0·y10|y0〉√

2

Figure 5: Hadamard transform

Exercise 5. Show that Hadamard transform is self-inverse, i.e. H⊗nH⊗n = I⊗n. While this might
be obvious for each individual qubit, it is worth expanding the expression.

An application of phase kickback and Hadamard transform is the Deutsch-Jozsa algorithm.

Problem 6 (Deutsch-Jozsa). Assume an oracle that implements a function f : {0, 1}n → {0, 1}
such that we are promised

1. (constant) all inputs give the same output, or

2. (balanced) half the inputs give ‘0’ and the other half give ‘1’.

The goal is to find out whether f(x) is constant or balanced.

Before going to the quantum algorithm for solving this problem, let us first look at the possible
classical solutions. In fact, the classical strategy is very simple. If we want 100% accuracy, in the
worse case, one has to query at least N

2 + 1 bits in x.
It seemed quite counter-intuitive in the beginning that there is a quantum algorithm, proposed

by Deutsch and Jozsa, which can produce the correct answer with just a single use of quantum
oracle (i.e., quantum unitary). The quantum oracle queries the bit string x only once; hence the
Deutsch-Jozsa algorithm has the exponential saving, compared with the classical strategy, in the
number of queries to x.

A quantum algorithm for Deutsch-Jozsa problem expands on Deutsch’s algorithm by replacing
a single Hadamard with the Hadamard transform.

7

|0〉 H • H

|0〉 H • H

...

|0〉 H • H

|0〉−|1〉√
2

U

Figure 6: Deutsch-Jozsa algorithm

We will again use a quantum oracle

Ox : |i〉|b〉 → |i〉 ⊗ |b⊕ xi〉 (19)

where i ∈ [N], b ∈ Z2 and ⊕ is the binary addition.
Let us see what the algorithm in 6 does step-by-step.
Starting with zeros on the first n registers and |0〉−|1〉√

2
on the last qubit, we apply Hadamards

on the first n qubits and end up with a uniform superposition over all strings

H⊗n|0〉⊗n |0〉 − |1〉√
2

= 2−n/2
2n−1∑
i=0

|i〉 |0〉 − |1〉√
2

. (20)

Next, we apply the oracle

U2−n/2
2n−1∑
i=0

|i〉 |0〉 − |1〉√
2

= 2−n/2
2n−1∑
i=0

|i〉 |0⊕ f(i)〉 − |1⊕ f(i)〉√
2

= 2−n/2
2n−1∑
i=0

(−1)f(i)|i〉 |0〉 − |1〉√
2

(21)

where we realized the insight from previous section that the oracle will perform a phase shift. After
the second Hadamard transform we get

2−n/2H⊗n
2n−1∑
i=0

(−1)f(i)|i〉 |0〉 − |1〉√
2

= 2−n
2n−1∑
j=0

2n−1∑
i=0

(−1)f(i)(−1)i·j |j〉 |0〉 − |1〉√
2

. (22)

The algorithm is concluded by measuring the first n registers. Let us now see what is the resulting
state if f is constant or balanced. If f is constant, f(i) = f independent of i. That would
simply (22) to

2−n(−1)f
2n−1∑
j=0

2n−1∑
i=0

(−1)i·j |j〉 |0〉 − |1〉√
2

= (−1)f |0〉⊗n |0〉 − |1〉√
2

, (23)

because the oracle will only contribute an overall phase and Hadamard transform is self inverse.
Thus, if the function is constant, we will measure all zeros. If the function is balanced, we can
divide the inputs into those with output 0 and the remaining half with output 1

2−n

 ∑
i,f(i)=0

(−1)0
2n−1∑
j=0

(−1)i·j |j〉+
∑

i,f(i)=1

2n−1∑
j=0

(−1)1(−1)i·j |j〉

 |0〉 − |1〉√
2

. (24)

8

We can see that this state has 0 overlap with |0〉⊗n. Thus, if we measure all zeros, the function
is constant and otherwise, it is balanced.

Exercise 7. Show that the output from a balanced function will be orthogonal to all the zero state.

Before ending this section, I would like to emphasize that if we allow some small error probability
in deciding whether x is constant or balance in the classical setting, the quantum advantage of the
Deutsch-Jozsa algorithm will disappear completely.

5 Quantum Fourier Transform

The discrete Fourier transform of a set {x0, · · · , xN−1} of N elements is defined as

Xk =
1√
N

N−1∑
j=0

xje
i2π
N
jk. (25)

In the following, we will denote ωN := e
i2π
N the N -th root of unity. Let UF be the square matrix

whose (i, j)-th element is 1√
N
ωijN .

Exercise 8. Show that UF is unitary.

The definition of Fourier transform in Eq. (25) can be extended to the quantum setting

|Ψk〉 := UF|k〉 =
1√
N

N−1∑
j=0

e
i2π
N
jk|j〉. (26)

It is crucial to note that the state |Ψk〉 is a product state when N = 2n and can be written as

1√
N

N−1∑
j=0

ei2πjk/2
n |j〉 =

n⊗
`=1

1√
2

(
|0〉+ ei2πk/2

` |1〉
)
,

.
To show that, consider the binary representation of k ≡ (k1, · · · , kn) ∈ [N], where k1 is the

most significant bit, i.e.,
k = k12n−1 + k22n−2 + · · ·+ kn20, (27)

and we write

k/2n = 0.k1k2 · · · kn =
n∑
`=1

k`2
−`.

9

Take for example, k = 5 = (1, 0, 1) and n = 3, therefore 5/8 = 0.101. Thus

|Ψk〉 =
1√
N

N−1∑
j=0

ei2πjk/2
n |j〉

=
1√
2n

1∑
j1=0

· · ·
1∑

jn=0

ei2π(
∑n
`=1 j`/2

−`)k|j1, j2, · · · , jn〉

=
1√
2n

1∑
j1=0

· · ·
1∑

jn=0

n⊗
`=1

ei2πj`k/2
−` |j`〉

=
1√
2n

n⊗
`=1

 1∑
j`=0

ei2πj`k/2
−` |j`〉


=

n⊗
`=1

1√
2

(
|0〉+ ei2πk/2

` |1〉
)
,

:=
n⊗
`=1

|Φ`〉, (28)

where in the last line we denote

|Φ`〉 :=
1√
2

(
|0〉+ ei2πk/2

` |1〉
)
, (29)

and k/2` = 0.kn−`−1 · · · kn, the ` least significant bits of k because the first n − ` most significant
bits of k have no effect on the value (ei2πm = 1 for m ∈ N).

|k1〉 H R2 R3 · · · Rn

|k2〉 • H R3 · · · Rn
|k3〉 • •...|kn−1〉 H Rn

|kn〉 • • • H

Figure 7: Circuit for quantum Fourier transform.

The implementation of Eq. (28) is given in Figure 7, where

Rm =

(
1 0

0 ei2π/2
m

)
. (30)

At the first step, the quantum state is transformed into

|k1〉 ⊗ · · · ⊗ |kn〉 →
1√
2

(
|0〉+ ei2π0.k1 |1〉

)
⊗ |k2〉 ⊗ · · · ⊗ |kn〉, (31)

because

ei2π0.k1 = ei2π
k1
2 =

{
−1 when k1 = 1

1 when k1 = 0
. (32)

10

Next, we have
1√
2

(
|0〉+ ei2π0.k1k2 |1〉

)
⊗ |k2〉 ⊗ · · · ⊗ |kn〉, (33)

because when k2 = 0, the state in Eq. (33) is the same as Eq. (31), and when k2 = 1, a phase of
ei2π/2

2
is applied. Following the same derivation, the state on the first qubit will become

1√
2

(
|0〉+ ei2π0.k1k2···kn |1〉

)
⊗ |k2〉 ⊗ · · · ⊗ |kn〉. (34)

On the second qubit we get after Hadamard

|k2〉 →
1√
2

(
|0〉+ ei2π0.k2 |1〉

)
and controlled rotations

|k2〉 →
1√
2

(
|0〉+ ei2π0.k2k3...kn |1〉

)
On all the qubits

2−n/2
(
|0〉+ e2πi0.kn |1〉

)(
|0〉+ e2πi0.kn−1kn |1〉

)
. . .
(
|0〉+ e2πi0.k1k2...kn |1〉

)
We can see that the number of gates in Figure 7 is

n+ (n− 1) + · · ·+ 1 =
n(n+ 1)

2
, (35)

that is exponentially less than the classical fast Fourier transform which requires O(n2n) gates.
(Exercise).

Exercise 9. Show that on all zero input, the Hadamard transform and quantum Fourier transform
produce the same output. Formally QFT |0〉⊗n = H⊗n|0〉⊗n.

Unlike Hadamard transform, quantum Fourier transform is not self inverse. QFT−1 is defined
as

|Ψk〉 := U−1
F |k〉 =

1√
N

N−1∑
j=0

e−
i2π
N
jk|j〉. (36)

Inverse-QFT can be implemented by inverting the circuit, i.e. running it backwards with rotations
in the negative direction. Thus, inverse-QFT has the same complexity as QFT.

6 Phase Estimation

In this section, we will introduce the quantum phase estimation protocol. The crucial component
of the quantum phase estimation protocol is the quantum Fourier transform.

Problem 10. Given a unitary U and its eigenvector |ν〉, estimate the corresponding eigenvalue
λ = ei2πϕ.

Theorem 11. The quantum phase estimation algorithm, illustrated in Figure 8, can estimate the
value of ϕ to the additive error ε with high probability, using O(log(1

ε)) qubits and O(1
ε) controlled-U

operations.

11

|0〉 H • . . .

QFT−1|0〉 H • . . .

|0〉 H . . . •

|ν〉 U2n−1
U2n−2 . . . U

Figure 8: A circuit for phases estimation and eigenvalue estimation. The last block represents the inverse quantum
Fourier transform.

Proof. Let N = 2n. After Hadamard transform step, the overall state is

|Ψt1〉 =

(
1√
N

N−1∑
k=0

|k〉

)
⊗ |ν〉. (37)

Since U |ν〉 = ei2πϕ|ν〉, we have

U2j |ν〉 = ei2π2jϕ|ν〉. (38)

Each controlled unitary will act as

c− U2j |ki〉|ν〉 = ei2π2jkiϕ|ν〉, (39)

where we again think of k in its binary representation k = k12n−1 + k22n−2 + · · ·+ kn20. Note that
all of the controlled-U operations commute. After application of the controlled unitaries, the state
will be

|Ψt2〉 =

(
1√
N

N−1∑
k=0

ei2πϕNk|k〉

)
⊗ |ν〉. (40)

Lastly we apply the inverse quantum Fourier transform here denoted as U−1
F

|Ψt3〉 = (U−1
F ⊗ I)|Ψt2〉 =

 1

N

N−1∑
y=0

N−1∑
k=0

e
i2πk
N

(Nϕ−y)|y〉

⊗ |ν〉. (41)

Finally, the probability of obtaining the outcome a ∈ [N] is

Pr{Outcome a} =

∣∣∣∣∣∣〈a| 1N
N−1∑
y=0

N−1∑
k=0

e
i2πk
N

(Nϕ−y)|y〉

∣∣∣∣∣∣2 (42)

=

∣∣∣∣∣ 1

N

N−1∑
k=0

e
i2πk
N

(Nϕ−a)

∣∣∣∣∣2 (43)

=

{
1 Nϕ = a∣∣∣ 1
N

∑N−1
k=0 e

i2πk
N

δ
∣∣∣2 Nϕ− a = δ 6= 0

. (44)

For the ideal case where Nϕ = a is an integer, the estimation is exact.
When Nϕ − a = δ 6= 0, we can show that the circuit will produce the correct outcome with

high probability.

12

7 Order finding and Shor’s algorithm

Order finding is an application of QFT and phase estimation that is the crucial step of Shor’s
algorithm. We say that r is an order of a modulo N if it is the smallest positive integer that
satisfies

ar = 1(mod N). (45)

where N is an integer.

Exercise 12. Find the order of 4 modulo 7, i.e. find r such that 4r = 1(mod7).

Generally, computing the order is difficult for large N - we do not have a classical algorithm
that can perform order finding in time polynomial in the number of bits of N . In fact, factoring
can be reduced into order finding. Let N be a large integer that we wish to find factors of. Assume
that N is not even or of the form nk = N – these cases are easy to check and would allow us to
find factors easily.

1. Randomly pick 1 < a < N .

2. Use Euclid’s algorithms to find the greatest common divisor gcd(a,N). If it is larger than 1,
we found a factor of N and stop.

3. Compute the period r such that ar = 1(mod N).

4. If r is odd or ar/2 = N − 1(mod N), go back restart from step 1.

5. Otherwise, both gcd(ar−1±, N) give nontrivial factors of N .

Exercise 13. Try this algorithm with N = 15 and a = 7.

Shor’s algorithm performs the steps above with order finding being the only quantum part of
the algorithm. Order finding uses the circuit in Fig. 8 with

|z〉c− U j |x〉 = |z〉|az·jx(mod N)〉. (46)

This oracle can be implemented using modular exponentiation and each application has complexity
O(logN2). Since we need to apply it N times, the overall complexity of applying controlled-U
operations is O(log3N). The other steps of the algorithm are the Hadamard transform with
complexity O(logN) (we need logN qubit to encode N) and quantum Fourier transform with
complexity O(log2N . Thus, the overall complexity of the order-finding algorithm, as well as the
quantum part of Shor’s algorithm, is O(log3N).

8 Hamiltonian simulation

In this section we use H to denote Hamiltonians and Had for Hadamard!
Given an initial state of a system |ψ(0)〉 and a Hamiltonian H, our goal is to simulate the

time evolution |ψ(0)〉 → e−iHt|ψ(0)〉. The goal of Hamiltonian simulation is to design a circuit U
consisting of gates and oracles that approximates the time evolution up to an error ε such that∥∥U − e−iHt∥∥2 < ε, (47)

13

Figure 9: Hamiltonian simulation approximates the time evolution by a series of digital operations.

where ‖·‖2 is the spectral norm.
Quantum systems are fundamentally difficult to simulate; the dynamics of quantum systems

is a BQP-hard (or BQP complete for Hamiltonians with natural restrictions). Except for a few
special cases, the complexity of the best known classical algorithms grows exponentially with the
number of qubits. As such, simulation of quantum dynamics is a field where quantum computers
can quickly outperform classical ones. In fact, the time evolution of quantum systems was the
original application for quantum computers suggested by Feynman.

In the simplest scenario, we assume that the simulated Hamiltonians are given in the form
H =

∑m
j=1Hj , where each Hj is sufficiently simple such that e−iHjt can be implemented directly

for arbitrary t. A common case is when these Hj are Paulis or local Hamiltonians.
The simplest quantum simulation algorithms rely on the Lie-Trotter formula

lim
r→∞

(
eA/reB/r

)
r = lim

r→∞

(
(1 +

A

r
)(1 +

B

r
)

)
r (48)

= lim
r→∞

(
1 +

A+B

r
+
AB

r2

)
r (49)

= lim
r→∞

(
1 +

A+B

r

)
r (50)

= eA+B (51)

Since the individual terms in the Hamiltonian typically do not commute, decomposing an ex-
ponential of a sum into a finite sum of exponentials will lead to errors.

Exercise: Prove that
∥∥et(A+B) −

(
eAt/reBt/r

)
r
∥∥ ∈ O(t2r) for ‖A‖, ‖B‖ ≤ 1.

Next, we can recursively that for H =
∑m

j=1Hj , one can decompose the evolution with respect
to H into the evolution with respect to each Hj as

Ũ =
(
e−iH1t/re−iH2t/r . . . e−iHmt/r

)
r +O(‖H‖t2/r). (52)

Thus, if we are willing to tolerate error at most ε, we need to perform O(‖H‖t
2

ε) operations.
Up to now, we assumed that we know how to implement each e−iHjt directly. Let us now show

how to implement them in some simple cases.
In the simplest case, Hj is a Pauli Z acting on the jth qubit. The Hamiltonian evolution is

then a Z-rotation on the jth qubit.

14

e−itZ = e−it|0〉〈0|+ eit|1〉〈1| (53)

Next, we show how to simulate a tensor product of Zs

H = Z1 ⊗ Z2 ⊗ · · · ⊗ Zn. (54)

We first prove the following identity. For an arbitrary unitary U :

Ue−iHtU † = U
∞∑
k=0

(−iHt)k

k!
U † (55)

= UU † − iUHU †t+ i2UH(U †U)Ht2U †

− i3UH(U †U)H(U †U)HU †t2 + . . . (56)

=
∞∑
k=0

(−iUHU †t)k

k!
(57)

= e−iUHU
†t. (58)

We can implement e−iZ1⊗···⊗Znt using the circuit in Fig. 10

• •
• •

...
. ...• •

e−itZ

Figure 10: Simulating a tensor product of Pauli Zs.

The correctness of the circuit can be showed through induction. We already proved the first step
in (53). In the inductive step, we conjugate an existing circuit by CNOTs, see Fig. 10. The top wire
corresponds to the very last register in our notation. We can rewrite CNOTe−itZ1⊗Z2⊗···⊗Zn−1CNOT
as:

(|0〉〈0| ⊗ I + |1〉〈1| ⊗X)
(
I⊗ e−itZ1⊗···⊗Zn−1

)
(|0〉〈0| ⊗ I + |1〉〈1| ⊗X)

=|0〉〈0| ⊗ e−itZ1⊗···⊗Zn−1 + |1〉〈1|Xe−itZ1⊗···⊗Zn−1X⊗
=e−itZ1⊗···⊗Zn−1 ⊗ |0〉〈0|+ eitZ1⊗···⊗Zn−1 ⊗ |1〉〈1|
=e−itZ1⊗Z2⊗···⊗Zn−1⊗Zn

Simulating other Paulis is possible by changing the basis. Recall that e−itUHU
†

= Ue−itHU †.
We can then use the identities

X = Had Z Had (59)

Y = S†Had Z Had S (60)

15

We used Had instead of H to denote the Hadamard gate since we reserved the symbol H for
Hamiltonians.

This allows us to simulate evolution according to any Pauli. For example, we can simulate the
evolution according to the H = X ⊗ Y ⊗ Z according to the circuit in Fig. 11.

Had • • Had

S† Had • • Had S

e−itZ

Figure 11: X and Y Paulis can be simulated by a change of basis. The circuit above depicts the simulation according
to e−itX⊗Y⊗Z .

Now we know how to simulate any Hamiltonian that is a sum of Paulis. The complexity of the
algorithm for simulating a Hamiltonian H =

∑L−1
l=0 Pl where Pns are Paulis on at most n qubits is

O
(
Lt2n

ε

)
. (61)

However, there is still a need for more efficient algorithms. First, the number of terms L needed to
decompose a Hamiltonian into a sum of Paulis can be exponentially large. Second, the scaling in
terms of t and ε is quite poor.

Other Hamiltonian simulation algorithms allow for different decomposition of Hamiltonians. A
popular one is decomposing a sparse matrix into 1-sparse matrices which can be then simulated
directly. Another one is decomposition into a linear combination of unitaries (LCU) which is a
generalization of the Pauli decompositions.

Exercise: Let ρ, σ be density matrices, S the SWAP operator and Trp partial trace over the
first variable. Show that

Trp[e
−iS∆ρ⊗ σeiS∆] = e−iρ∆σeiρ∆ +O(∆2)

In these more general cases the Hamiltonian is accessed through an oracle. One type of oracular
access is particularly common when the Hamiltonian (in a computational basis) is given by a sparse
matrix. We say a Hamiltonian is row-d-sparse if each row has at most d non-zero entries. If there
is an efficient procedure to locate these entries we moreover say that the Hamiltonian is row-
computable. In this case, one can efficiently construct oracles

Oloc|r, k〉 = |r, k ⊕ l〉 (62)

Oval|r, l, z〉 = |r, l, z ⊕Hr,l〉. (63)

Oracle Oloc locates the position l of the k-th non-zero element in row r. The oracle Oval then gives
the value of the matrix element Hr,l. We compute the cost of algorithms in terms of the number
of queries to these oracles.

16

It is possible to construct different oracles. Any Hermitian matrix can be decomposed into a
sum of unitaries

H =
L−1∑
l=0

αlHl, (64)

where for each l, αl ≥ 0 and Hl is a unitary matrix ‖Hl‖ = 1. This decomposition can be efficiently
implemented for sparse Hamiltonians. The coefficients αl and unitaries Hl can be accessed through
oracles

Oα|l, z〉 = |l, z ⊕ αl〉 (65)

OVl |l, ψ〉 = Vl|l, ψ〉, (66)

or, in some cases, described classically.

9 Grover’s Algorithm

Problem 14 (The search problem). For N = 2n, we are given a marked item w ∈ ZN2 , and the
goal is to locate w.

The classical solution is easy to see. In the worse case, the algorithm has to check all N items
in order to find x.

In the quantum setting, we are given an oracle UG so that

UG|x〉 =

{
−|x〉, if x = w

|x〉, otherwise
. (67)

In other words, the Grover’s oracle can add a phase to the target element |w〉. We can see that

UG = I − 2|w〉〈w|. (68)

We will also define a diffusion operator as follows:

Ud = 2|s〉〈s| − I, (69)

where

|s〉 =
1√
N

N−1∑
i=0

|i〉. (70)

Note that the diffusion operator can be easily implemented as follows:

Ud = H⊗n
(
2|0〉〈0|⊗n − I

)
H⊗n. (71)

The quantum circuit for the Grover’s search algorithm is illustrated in Figure 12, where UG and
Ud are given in Eqs. (68) and (69), respectively.

The Grover’s algorithm has the following steps. As the first step, the algorithm prepares a
uniform superposition state:

|Ψt1〉 = H⊗n|0〉⊗n =

(
1√
N

N−1∑
i=0

|i〉

)
≡ |s〉. (72)

17

|0〉 H

Ug Ud

. . .

Ug Ud

|0〉 H . . .

...

|0〉 H . . .

|0〉 H . . .

Figure 12: Grover’s algorithm

At the next step, the protocol employs the Grover’s oracle UG:

|Ψt2〉 = UG|Ψt1〉

= |s〉 − 2√
N
|w〉, (73)

because 〈s|w〉 = 1√
N

. Then, the protocol employs the diffusion oracle Ud:

|Ψt3〉 = Ud|Ψt2〉 (74)

= (2|s〉〈s| − I)

(
|s〉 − 2√

N
|w〉
)

(75)

=

(
N − 4

N
|s〉
)

+
2√
N
|w〉. (76)

We say that “one iteration” of Grover’s search algorithm consists of the employment of UG

followed by Ud. In the following, we aim to show that (i) the protocol can find the target w with
O(
√
N) iterations with successful probability ≈ 1 and (ii) this is optimal given access to quantum

computers.

|w⊥〉

|w〉

|s〉

θ

(a) Step t1

|w⊥〉

|w〉

UG|s〉

θ

|s〉

θ

(b) Step t2

|w⊥〉

|w〉

|s〉

UG|s〉

UdUG|s〉

θ
θ

2θ

(c) Step t3

Figure 13: Geometric illustration of Grover’s search procedure

The easiest way to prove statement (i) is by the following geometric argument in Figure 13.
Denote

|w⊥〉 =
1√
N − 1

∑
x6=w

|x〉.

18

One can see that the uniform superposition state |s〉 at the step t1 can be decomposed into

|s〉 =

√
1

N
|w〉+

√
N − 1

N
|w⊥〉, (77)

and the angle θ in Figure 13a corresponds to

sin θ =

√
1

N
, cos θ =

√
N − 1

N
. (78)

At the second step, application of UG leads to

UG|s〉 = −
√

1

N
|w〉+

√
N − 1

N
|w⊥〉

= − sin θ|w〉+ cos θ|w⊥〉. (79)

Geometrically, the oracle UG reflects the vector |s〉 along the axis |w⊥〉 in Figure 13b. Finally,
application of Ud at the third step t3 to Eq. (79) is equivalent to reflect the state UG|s〉 along the
axis |s〉. Therefore, the application of UdUG yields

UdUG|s〉 = sin 3θ|w〉+ cos 3θ|w⊥〉. (80)

By induction, after k iterations, we have

(UdUG)k|s〉 = sin(2k + 1)θ|w〉+ cos(2k + 1)θ|w⊥〉. (81)

If we measure after k iterations, the probability of obtaining the target element w is

pk := Pr{w appears} = sin((2k + 1)θ)2. (82)

If we choose k = π
4θ −

1
2 , then the Grover’s algorithm will produce the state |w〉 with certainty

because pk = 1. However k = π
4θ −

1
2 will unlikely be an integer, but we can still show that if k̃ is

an integer closest to k and 1� N , then the failure probability decays proportional to N :

1− pk̃ = cos((2k̃ + 1)θ)2

= cos((2k + 1)θ + 2(k̃ − k)θ)2

= cos(π/2 + 2(k̃ − k)θ)2

= sin(2(k̃ − k)θ)2

≤ sin(θ)2

=
1

N
, (83)

where the first inequality follows because |k − k̃| ≤ 1/2. Since arcsin θ ≥ θ, then

k̃ ≤ π

4θ
=
π

4

√
N. (84)

Hence, we can see that the number of iteration is O(
√
N). While Grover’s algorithm is often

presented as a search in an unsorted database, using it within such a quantum data structure would
wipe up all the speedup. Instead, the speedup from Grover search is most commonly seen to boost
the success probability of other algorithms in its modified form known as amplitude amplification.

19

10 Additional reading

UTS courses Quantum Software and Quantum Algorithms both build on the topics from this
lecture. Introduction to algorithms [1] is a wonderful introduction textbook to classical algorithms
and data structures. A lot of the explanations here is based on [2]. Lecture notes on quantum
algorithms from Andrew Childs (available online) cover quantum algorithms with a lot more detail.

References

[1] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein, Introduction to algorithms, MIT
press, 2009.

[2] Phillip Kaye, Raymond Laflamme, Michele Mosca, et al., An introduction to quantum computing, Oxford Univer-
sity Press on Demand, 2007.

20

	What makes a good algorithm
	Big-O notation
	Oracles

	Thinking about quantum algorithms
	Phase kickback
	Hadamard transform
	Quantum Fourier Transform
	Phase Estimation
	Order finding and Shor's algorithm
	Hamiltonian simulation
	Grover's Algorithm
	Additional reading

