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Abstract

Contents to be covered in this lecture are

1. Linear algebra

2. Quantum states

3. Quantum operations

4. No-cloning theorem

5. Measurement

In this lecture, we will examine the concepts of quantum states, operations and measurement
from a more mathematical standpoint. This will give us the framework for discussing quantum
protocols in subsequent lectures. The following text assumes existing familiarity with quantum
states, operations and measurements on the level of UTS 41170 Introduction to Quantum Comput-
ing. If you need a refresher of these concepts before we delve into the maths, The Qiskit Textbook
provides an easy to understand, high-level overview.

The language of quantum mechanics is linear algebra often written using the Dirac (bra-ket)
notation. We will first establish the formalism of linear algebra in Dirac notation and review linear
algebra concepts that often come up in quantum computing and quantum information.

1 Linear Algebra in Dirac notation

A d-dimensional Hilbert space H is a vector space equipped with an inner product. Let {ei}d−1i=0 be
the computational basis, where ei is a column vector of zeros except a ‘1’ at the (i + 1)-th entry.
Any vector v ∈ H can be decomposed into basis vectors ei as

v =

d−1∑
i=0

viei, (1)

for some complex number vi ∈ C. The inner product (or dot product) ‘·’ of two vectors u and v in
the same basis in H is defined as

u · v = u†v =
d−1∑
i=0

u∗i vi, (2)
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where † denotes transpose and conjugate.
An alternative way of expressing linear algebra is through bra-ket (Dirac) notation. Throughout

this subject, we will denote |i〉 ≡ ei and write v as |v〉:

|v〉 =

d−1∑
i=0

vi|i〉. (3)

This is sometimes known as amplitude encoding of a vector v =
∑

i viei. The inner product of |u〉
and |v〉 in H becomes

〈u|v〉 =
∑
i,j

u∗i vj〈i|j〉 =
∑
i

u∗i vi (4)

where 〈u| ≡ |u〉† is now a row vector and 〈i|j〉 = δi,j .
The choice of the basis state {|i〉} is arbitrary as long as all states |i〉 are mutually orthogonal and

normalized (of course, one could define a non-orthonormal basis but why would you?). However,
choosing a convenient basis (typically either the computational basis or an eigenbasis of some
operator) makes any work easier.

For a Hilbert space H, we denote L(H) the collection of linear operators L : H → H. We denote
the identity operator I =

∑d−1
i=0 |i〉〈i|. Given an linear operator L, there is an equivalent matrix

representation [Li,k] in the basis spanned by {|i〉〈k|}:

L =
d−1∑
i,k=0

Li,k|i〉〈k|, (5)

where Li,k = 〈i|L|k〉.
An linear operator H ∈ L(H) is called Hermitian if and only if H† = H. For a Hermitian

matrix H, the spectral theorem states that there exists an orthonormal basis {|νi〉} and real numbers
{λi} ∈ R so that

H =
∑
i

λi|νi〉〈νi|. (6)

Equivalently, {λi} and {|νi〉} are known as eigenvalues and eigenvectors of H, respectively.

Exercise 1. Verify that Pauli X is a Hermitian operator and compute its eigenvalues and eigen-
vectors.

A Hermitian operator P ∈ L(H) is positive, denoted as P ≥ 0, if and only if 〈v|P |v〉 ≥ 0 for all
|v〉 ∈ H. We denote L(H)+ = {P ≥ 0 : P ∈ L(H)} the set of positive semi-definite operators on H.

1.1 Tensor product of Hilbert spaces

Given two vectors |u〉 ∈ HA and |v〉 ∈ HB, the tensor product ‘⊗’ of them is

|u〉 ⊗ |v〉 =

dA−1∑
i=0

dB−1∑
j=0

uivj |i〉 ⊗ |j〉, (7)
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a vector of dAdB-dimension. If {|i〉A} and {|j〉B} are orthonormal bases inHA andHB, respectively,
then {|i〉A ⊗ |j〉B}, i ∈ {0, · · · , dA − 1} and j ∈ {0, · · · , dB − 1}, forms an orthonormal basis in
HA ⊗HB. The inner product on the space HA ⊗HB is defined by

(〈v2|B ⊗ 〈u2|A)(|u1〉A ⊗ |v1〉B) = 〈u2|u1〉〈v2|v1〉. (8)

This definition extends to tensor product of linear operators in L(H):

L⊗M =

dA−1∑
i,j=0

Li,j |i〉〈j|

⊗
dB−1∑
k,`=0

Mk,`|k〉〈`|,


=

dA−1∑
i,j=0

dB−1∑
k,`=0

Li,jMk,`|i〉〈j| ⊗ |k〉〈`|. (9)

Useful properties of tensor product are summarised as follows.

1. (A1 ⊗ · · · ⊗Ak)(B1 ⊗ · · · ⊗Bk) = (A1B1 ⊗ · · · ⊗AkBk)

2. (A1 ⊗ · · · ⊗Ak)−1 = A−11 ⊗ · · · ⊗A
−1
k

3. (A1 ⊗ · · · ⊗Ak)† = A†1 ⊗ · · · ⊗A
†
k

4. If λ1, · · · , λk are eigenvalues of A1, · · · , Ak with eigenvectors |u1〉, · · · , |uk〉, respectively, then∏k
i=1 λi is an eigenvector of A1 ⊗ · · · ⊗Ak with respect to the eigenvector |u1〉 ⊗ · · · ⊗ |uk〉.

1.2 Trace and Partial Trace

The trace Tr : L(H)→ C is a linear map defined by

Tr |j〉〈k| = 〈k|j〉 = δk,j . (10)

Extended by linearity, the trace of a linear operator L is then

TrL = Tr

 d−1∑
i,k=0

Li,k|i〉〈k|


=

d−1∑
i,k=0

Li,k Tr |i〉〈k| (11)

=
d−1∑
i,k=0

〈i|L|k〉δi,k (12)

=
d−1∑
i=0

〈i|L|i〉. (13)

Exercise 2 (Cyclic property). Show that TrLM = TrML.

Exercise 3. Show that TrA is independent of the basis of A.

3



Note that TrL†M defines an inner product on the space of L(H), and is known as the Hilbert-
Schmidt inner product.

A partial trace is a generalization of a trace. While a trace maps an operator to a scalar, partial
trace maps an operator to a lower-dimensional operator. Formally, partial trace TrA : L(HAB) →
L(HB) is defined by

TrA(|i〉〈j|A ⊗ |k〉〈`|B) = 〈j|i〉|k〉〈`|B = δi,j |k〉〈`|B. (14)

For a composite system on the space HA ⊗ HB, TrA gives trace only over the subsystem on HA.
We often say that we ”trace-over A.

2 Quantum States

We are already familiar with qubits defined as(
α
β

)
(15)

where α, β ∈ C such that |α|2 + |β|2 = 1. Instead of using the vector form in Eq. (15), we will
adopt the notation convention, the Dirac notation introduced in Section 1. Specifically, we will use
the ket notation |·〉 to denote a column vector of length one, e.g.,

|ψ〉 :=

(
α
β

)
, (16)

and use the bra notation 〈·| to denote the hermitian conjugate of |·〉:

〈ψ| :=
(
α∗ β∗

)
. (17)

We will also denote the computational basis of a d dimensional Hilbert space as {|0〉, |1〉, · · · , |d−1〉},
where |i〉 is a column vector of zeros except a ‘1’ in the (i+ 1)-th entry. The qubit |b〉 in Eq. (15)
can be written as

|ψ〉 = α|0〉+ β|1〉. (18)

The quantum state |b〉 is viewed as in a superposition of states |0〉 and |1〉, a phenomenon unique in
quantum mechanics. Generally, a quantum state in a d-dimensional Hilbert space can be expressed

|ψ〉 =

d−1∑
i=0

αi|i〉, (19)

where the amplitude αi satisfies
∑

i |αi|2 = 1.
Given two quantum states |ψ〉A ∈ HA and |φ〉B ∈ HB, the joint quantum state is |ϕ〉AB ≡

|ψ〉A ⊗ |φ〉B ∈ H ≡ HA ⊗ HB, where ⊗ is the tensor product . Tensor product can also extend
a joint quantum system to include n subsystems. If one of the subsystems, say HA, is lost from
|ϕ〉AB, the residue quantum state returns to

|φ〉〈φ|B = TrA |ϕ〉〈ϕ|. (20)
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What is interesting in quantum mechanics is that there exist pure quantum states in H that
cannot be decomposed into tensor product of two pure states in HA and HB, respectively. A most
notable example is the Bell state

|Φ+〉AB :=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B). (21)

Such a state is called an entangled state, a quantum state that contains entanglement.
States that we described above are known as pure states. A quantum state can also be randomly

prepared: with probability pi, the state |ψi〉 is prepared. For example, we can have an apparatus
that at 95% of times prepares the “correct” state |11〉, in 2% of cases an error occurs and we
prepare |10〉, with 2% chance we prepare |01〉 and 1% a major error leads to preparation of |00〉.
The resulting state can be described as a probability distribution over the basis. Note that this is
strictly different from a superposition over the states. Formally, an outcome of a probabilistic state
preparation is an ensemble E : {pi, |ψi〉} can be denoted by a density operator

σ :=
∑
i

pi|ψi〉〈ψi|, (22)

where |ψi〉 are individual states that could be prepared and pi are the corresponding probabilities.
We refer to objects σ as density matrices. A density matrix is the most general description of
quantum states. It generalizes the concept of a pure state, if ρ is pure, it can be written as a
projector on the corresponding pure state |ψ〉

σψ = |ψ〉〈ψ|. (23)

Exercise 4. There are three necessary and sufficient criteria that a matrix corresponds to a valid
description to a quantum state. Show that (22) satisfies all three of them

1. ρ is Hermitian 1

2. ρ is positive semi-definite 2

3. Tr[ρ] = 1.

The density matrix representation of a quantum state is considered to be the most general form
in the following sense. If the ensemble only contains one entry, namely, σE ≡ |ψ0〉〈ψ0| is of rank
one, we say that the quantum state is pure. Otherwise, it is mixed.

Exercise 5. For a density operator σ ∈ D(H), show that Trσ2 ≤ 1 with equality if and only if σ
is pure.

The density matrix representation also incorporates the notion of classical random bit; namely
if σE is diagonal

σE :=

(
p0 0
0 p1

)
, (24)

then this means that the state σE is prepared in |0〉 with probability p0 and in |1〉 with probability
p1.

1A hermitian matrix A satisfies A† = A.
2Eigenvalues of a positive semi-definitive matrix are real and larger or equal than 0.
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Another way of thinking about mixed states is that they are a part of an entangled state. Say
that Alice and Bob share an entangled pair 1√

2
(|0〉A⊗|0〉B + |1〉A⊗|1〉B). We can use partial trace

to compute the description of the state that each of them has.

Exercise 6. Let |Φ〉AB = 1√
2
(|0〉A⊗|0〉B+|1〉A⊗|1〉B). Compute TrA(|Φ〉〈Φ|AB) and TrB(|Φ〉〈Φ|AB).

For an entangled state, if its partial system is lost, then it will decay into a mixed state. Consider
Let us return to the scenario of a quantum ensemble E : {px, |ψx〉}x∈X . Suppose that the person,

say Alice, who prepares this ensemble can keep track of ‘which state’ she prepared. In other words,
she has the additional classical label |x〉〈x| attached to the state σx ∈ D(HB), where {|x〉} forms
an orthonormal basis of HX . Such a hybrid classical-quantum system can be described as

σXB =
∑
x∈X

px|x〉〈x| ⊗ |ψx〉〈ψx|. (25)

This is an example of the Church of the Larger Hilbert Space. Forgetting (or lost) the classical
information will result in

σB = TrX σXB =
∑
x∈X

px|ψx〉〈ψx|,

given in Eq. (22).
Consider a general mixed state σAB ∈ D(HA ⊗HB), we say σAB is separable if

σAB =
∑
i

piσ
i
A ⊗ σiB (26)

where
∑

i pi = 1. In other words, σAB is separable if it can be written as convex combination of
product states.

3 Quantum Operations

The time evolution of a close quantum system is modelled by a unitary U ; namely,

|ψ〉 → U |ψ〉. (27)

For a general quantum state described by a density matrix (27) takes form

ρ→ UρU † =
∑
i

U |ψi〉〈ψi|U †. (28)

The unitary evolution can be viewed as solving the Schrodinger equation

i~
d

dt
|ψ〉 = H|ψ〉 (29)

where ~ is the Planck constant and H is the system Hamiltonian. Eigenvalues of Hamiltonian
define the allowed energies of a system.

Exercise 7. Define purity of a quantum state as Tr[ρ2]. Show that unitary operations preserve
purity, i.e. a pure state never gets mapped onto a mixed state and vice versa.
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The most general operation on quantum states is a quantum channel, also known as completely
positive trace-preserving map (CPTP map). The ensures that quantum states will always get
mapped onto valid quantum states. This condition is even more complicated than it sounds; if
we apply a quantum channel on only a part of a quantum state, we still must get a valid density
matrix after the transformation. Any such channel can be written as

Φ(σ) =
∑
i

BiσB
†
i where

∑
i

BiB
†
i = 1. (30)

A non-intuitive property of quantum mechanics that would be able to copy a general (unknown)
quantum state. This is in stark contrast with classical information that can be always copied.

Suppose that we have two quantum systems of equal size HA = HB. Given a quantum state
|φ〉A ∈ HA, if quantum mechanics allows the operation of ‘copying’, then this copying operation
Ucopy should achieve

Ucopy(|φ〉A ⊗ |0〉B) = |φ〉A ⊗ |φ〉B. (31)

In other words, the copying operation should produce a second copy of |φ〉 in HB (that was initially
prepared in some ground state |0〉B.)

Theorem 8 (No-Cloning theorem). There is no unitary operation Ucopy on HA ⊗ HB such that
for all |ψ〉A ∈ HA and |0〉B ∈ HB

Ucopy(|φ〉A ⊗ |0〉B) = eif(φ)|φ〉A ⊗ |φ〉B (32)

for some number f(φ) that depends on the initial state |φ〉.

Exercise 9. Prove the no-cloning theorem by contradiction.

a Assuming Ucopy exists, compute 〈0|B⊗〈φ|A)U †copyUcopy(|ψ〉A⊗|0〉B) for any two states |ψ〉A, |φ〉A ∈
HA.

b Explain how (a) leads to a contradiction.

The proof of the theorem can be also found in the Appendix

4 Quantum Measurement

Quantum measurement is a process to observe the classical information within a quantum state. It
can destroy the superposition property of a quantum state. The quantum measurement postulate
evolves from Born’s rule in his seminal paper in 1926, which states that “the probability density of
finding a particle at a given point is proportional to the square of the magnitude of the particle’s
wave function at that point”. Given the qubit state |b〉 in Eq. (18), Born’s rule says that we
can observe this qubit in state |0〉 with probability |α|2 and in state |1〉 with probability |β|2.
Furthermore, after the measurement, the qubit state |b〉 will disappear and collapse to the observed
state |0〉 or |1〉.

In general, a quantum measurement is mathematically described by a collection of Υ := {Mi},
where each measurement operator Mi ∈ L(H) satisfies∑

i

Mi = I (33)
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and each Mi is positive semi-definite operator. We call this measurements positive operator-valued
measure (POVM). The probability of obtaining an outcome i on a quantum state ρ is

pi := Tr(Miρ). (34)

The state after measurement will be altered as

ρi :=
Miρ

pi
.

The normalised condition in Eq. (33) guarantees that∑
i

pi =
∑
i

Tr(Miρ)

= Tr

(∑
i

Miρ

)
= Tr ρ = 1. (35)

Projective Measurement and Observables

A special instance of quantum measurements is the projective measurement. A projective measure-
ment Υ is a collection of projectors {P0, P1, · · · , PL−1} which sum to identity. Note that PiPj = 0
for i 6= j and P 2

i = Pi. When we measure a quantum state |φ〉 with Υ, we will get the outcome j
with probability

pj := Tr(Pj |φ〉〈φ|)

and the resulting state
Pj |φ〉√
pj
.

A projective measurement Υ = {Pi} with the corresponding measurement outcomes {λi} ∈ R
can be efficiently represented by a Hermitian matrix H =

∑
i λiPi. Such a matrix is called an

observable. In physics, an observable is a physical quantity that can be measured. Examples of
observables of a physical system include the position or momentum of a particle, among many
others.

Measuring the observable H means that performing the projective measurement Υ = {Pi} on
a quantum state |φ〉. It follows that the expected value of the outcomes if we measure the state |φ〉
with Υ = {Pi} is

〈H〉 :=
∑
i

λi TrPi|φ〉〈φ| = 〈φ|H|φ〉. (36)

If each projector Pi ∈ Υ is of rank one, Pi = |i〉〈i|, where {|i〉}i∈X forms a basis for HX ,
we will often call such a projective measurement Υ a von Neumann measurement. With the von
Neumann measurement Υ = {|i〉〈i|}, we can then argue the operational equivalence between a
quantum ensemble E = {px, |ψx〉}x∈X and the corresponding hybrid classical-quantum state σXB
in Eq. (25):

1. Measuring the subsystem X with the von Neumann measurement Υ will leave subsystem
B in the state |ψi〉 with probability pi, for i ∈ X . This results in the quantum ensemble
E = {px, |ψx〉}x∈X .
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2. Conversely, given a quantum ensemble E , we have stated how one can prepare the hybrid
classical-quantum state σXB in Eq. (25).

Exercise 10. Show that every POVM can be constructed by a projective measurement on a larger
Hilbert space.

Quantum measurement can be used to distinguish a set of quantum states. We will elaborate
on state distinguishability in future lectures.

Further Reading

A very good lecture note by Ronald de Wolf can be downloaded here [1].

5 Appendix

5.1 Proof of the non-cloning theorem

Assume such a coping operation exists. Then for any two states |ψ〉A, |φ〉A ∈ HA, the following
holds

Ucopy(|φ〉A ⊗ |0〉B) = eif(φ)|φ〉A ⊗ |φ〉B (37)

Ucopy(|ψ〉A ⊗ |0〉B) = eif(ψ)|ψ〉A ⊗ |ψ〉B. (38)

Now

(〈0|B ⊗ 〈φ|A)U †copyUcopy(|ψ〉A ⊗ |0〉B) = 〈φ|ψ〉A (39)

= ei(f(ψ)−f(φ))〈φ|ψ〉A〈φ|ψ〉B. (40)

The first equality follows because U †copyUcopy = I and 〈0|0〉B = 1. Hence

|〈φ|ψ〉A|2 = |〈φ|ψ〉A|, (41)

which implies that either |〈φ|ψ〉A| = 1 or |〈φ|ψ〉A| = 0. This allows us to conclude that not a single
universal copying operation Ucopy exists for two arbitrary states.
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