
UTS41076 - Assignment 3
Quantum Walk Search

Arjun David Rao

Oct 2021

Abstract

Search algorithms appear in many different flavours across the computer
science community and are frequently used to find marked elements in struc-
tured and unstructured graphs. One of these is the classical walk search,
where a random walk is used to traverse the edges of a Markov chain and
find a marked vertex. Quantum walk searches are a quantum mechanical
version of a classical walk search implemented on a quantum state space
and offer a speed up comparatively. Although these protocols are yet to be
demonstrated experimentally, they have strong mathematical rigour as they
exponentially decrease hitting times and also have a quadratic speed up in
query complexity.

1 Classical random walks

Quantum walks are derived from the principle behind a classical walk; the
latter being a common mathematical model used to simulate stochastic mo-
tion. It can be described by using an example of a coin toss, where by flipping
the coin and it landing on a face determines the movement of a particle on
a 1-D axis. For a discrete classical walk, the path can be quantified by the
position, X,

X =
n∑

i=1

xi (1)

1

xi =

{
−1, p = 1

2

+1, p = 1
2

(2)

where p is the probability, n is the time step and xi is the length of each step.
A general random walk also has the following properties, with the mean

X̄ and variance Var (X),

X̄ = nL(2p− 1) (3)

Var (X) = 4nL2p(1− p) (4)

where L is the length of each step and N is the total number of steps. For
the simple example above, X̄ = 0 and Var(X) = n. For algorithms which
rely on traversing a large state-space, a larger variance will lead to a higher
probability of finding any given item in the state space sooner, and hence
shorter halting times.

Whilst the random walk poses an interesting mathematical concept, it
has a broad range of applications to many different areas of modern science
and technology. Models using random walks range from Brownian motion,
stock market fluctuations and even neurons firing in the brain. One of these
applications is performing a search for a marked element in a set of data.

1.1 Search via a walking algorithm

Search algorithms are very useful in the modern world, millions of users use
the famous Page Rank algorithm finds everyday to find and index webpages.
Different approaches have been made to find marked elements in an array of
data. One of those involves using a classical walk, where an algorithm can
be created to perform a search on any graph where there are marked ele-
ments [1]. This class of problem is known as spatial search problems, where
in an undirected graph G, there are M marked vertices. The goal is to find
a marked element by moving across the edges of the graph. The classical
approach is to perform a random walk on G until a marked element is found,
where the running time is known as the hitting time HT(G,M), quantifying
the quality of the algorithm. An algorithm like this can be achieved using
the below pseudo-code.

2

A Naive Search Algorithm

1. Generate x ∈ X where a sample is drawn for the stationary dis-
tribution π of the Markov Chain P

2. Check is x is a marked element, if so then output x and end

3. Else, update x using a classical random walk (one random walk
step along P)

The marked element will be found eventually, but it is not particularly
efficient. This is due to statistics of the random walk, where the state space
is not quickly traversed by a classical walker. The memory required for this
is also of concern, as each vertex has to be loaded. With algorithms that
have no deletion, this may not be scale-able to large data set searches [2].
The classical complexity of this algorithm can be bound as

S + T · (U + C), (5)

where T =
√

HT(P, {z}), S is the set-up cost C is the checking cost and U
is the update cost [1].

In this classical random walk, the hitting time can be estimated as

HT(P,M) =

n−|M |∑
k=1

|⟨v′k | U⟩|
2

1− λ′k
(6)

To reduce the hitting time and have a better algorithm, one can increase
the speed of the steps taken of alter the statistics of the walk process to match
the structure of the data. As the step in the markov chain is determined by a
random walk, the distribution of the outcomes will follow a Gaussian profile
as seen in Section 1. It has a mean centered on zero and also the standard
deviation as

√
n.

Classically the walking algorithms perform well in unstructured databases,
but if the database has a structure then there will the algorithm may not be
as efficient. In a weighted Markov chain [3], a faster traversal through the
state-space may be preferable.

2 Quantum walk

The quantum equivalent of the random search walk was proposed initially
in Ref.[4], a qubit state space is traversed randomly using the stochastic

3

Figure 1: A quantum random walk circuit on four nodes, showing the use of
the Hadamard gate and 2 CNOT gates to generate a stochastic process.

processes in quantum systems. Typically in the 1-D case, a superposition
state is used to generate the randomness. A circuit for a quantum walk on
four nodes is shown in fig.1.

To analyse the properties of this walk, the final position of a particle after
N steps can be plotted against the classical version. The probability density
is then compared in fig.2. It can clearly be seen that there is a quantum
effect of interference occurring here, where the distribution does not follow
the same Gaussian profile as seen in the classical case.

In the quantum case, the standard deviation is N , the number of steps
taken. This has interesting implications for algorithms that use a quantum
random walk.

A discrete quantum walk can be shown using a spin-1/2 particle on a
linear array of discrete sites. The state

|Ψ⟩ = |s⟩ ⊗ |ψ⟩ (7)

with the |s⟩ being the spin state and |ψ⟩ being the position state.
By then applying a unitary transformation such as the Hadamard H gate,

a superposition is obtained on the spin state. Then a unitary operation which
conditionally shifts the particle left or right then will apply the quantum walk.

| ↑⟩ ⊗ |0⟩ H−→ 1√
2
(| ↑⟩+ | ↓⟩)⊗ |0⟩ S−→ 1√

2
(| ↑⟩ ⊗ |1⟩+ | ↓⟩ ⊗ | − 1⟩) (8)

Returning to the quantum circuit with four nodes in fig.1, the state space is
propagated by assigning each final qubit state to a node and then performing
CNOT gates as a conditional shift operator.

4

Figure 2: The probability distribution of the particle’s position after N steps.

2.1 Quantum walk search algorithms

Quantum random walks have been thoroughly investigated in the recent
decade as they have the potential to provide speed-ups in algorithms over
classical counterparts. The famous Grover search algorithm can be shown
to be a quantum random walk on the edges of a complete graph [3] and is
therefore one of the first quadratic speed-ups demonstrated. However, the
algorithmic potential of the quantum walk was first recognised in [5], where a
quantum walk was used to emulate a Grover’s search. After this initial proof
of utility, a wave of the applications followed and can be decomposed into
two categories. The first are derived from the fact that quantum walks can
propagate through a tree exponentially faster than classical walks, therefore
giving faster hitting times [6]. The second are algorithms based on quantum
walks, giving quadratic speed ups to complexities.

An example is the work done by Ambainis [7], one of the first variations of
a search using quantum walk which surpasses Grover search. This algorithm
used quantum random walks for element distinctness, a problem of finding 2
marked elements that are the same in an array of n items. It can be classically
shown that the element distinctness problem has a query complexity of O(n)
[7], given that there is enough space to store all of the items n. The Ambainis

5

seminal paper reduced the number of queries to O(n2/3) with the use of a
quantum walk.

Szegedy then collated the results from previous algorithms and showed
that there was a generalisation to them by adapting the classical hitting
time theory to a quantum one [3]. In the paper, the it is demonstrated
that the quantum hitting time for finding a marked element in an ergodic
Markov chain P with P = P T is the square root of the classical version. To
give an example of a quantum search algorithm and the cost involved, the
framework presented in [8] will be demonstrated. Firstly, the quantum state
|π⟩ is initialised where

|π⟩ =
∑
x∈X

√
πx |x⟩ |px⟩ (9)

which is the quantum equivalent of starting in a stationary distribution π
in the classical search algorithm. This invokes a cost S + U , where S is the
set-up cost and U is the update cost. The rest of the algorithm is as follows

Quantum search algorithm in the MNRS framework

1. 5 times:

• Sample a state x from a stationary distribution π of P

• if x is a marked element (i.e. x ∈M), then stop!

2. Choose the number of repetitions T randomly from a set, which then
defines the number of ancilla qubits (ks)

3. Prep the initial state |π⟩d |0Tks⟩

4. Repeat T times:

• Apply a phase flip on the state |x⟩d |y⟩d |z⟩ if x ∈M

• Perform a quantum circuit R(P) which is similar to a reflection
ref(π). Where the quantum walkW (P)d is described byW (P)d =
ref(B)d · ref(A)d

The quantum circuit R(P) involves a similar process to a Grover search as
it involves a phase estimation circuit, however the difference is that it steps
along the markov chain using a quantum random walk. Returning to the

6

cost of this algorithm, preparing |π⟩d has an associated cost of S + U and
each iteration and phase flip costs C. In the quantum circuit R(P), each it-
eration a The advantage of using a quantum walk search is embedded in the
mathematical derivation of a search algorithm and the cost of the Quantum
search can be shown to be

S +
1√
ε

[(
1√
δ
log

1√
ε

)
U+ C

]
(10)

where ε is the lower bound on the probability than an element chosen from
P is marked. In Szegedy’s framework, Quantum random walks are supposed
to give an exponential speed up in hitting times and other search algorithms
have already been shown to give quadratic speed up in queries compared to
their classical versions. The result in the MNRS framework corroborates this
derviation for the search algorithm above.

2.2 Realising these Quantum Walks

Quantum walks have been demonstrated on 1-D state spaces [9] on trapped
ions and also by Rohde in 2-D in optical hardware [10]. In the first paper,
a single trapped ion’s electronic states are used to provide the superposition
state. Then, the motional degrees of freedom of the ion in its harmonic well
are used to provide the random walk. A coupling interaction using carrier and
displacement Raman beams are used to drive the spin dependent transition
and thus generate a random walk. In the latter, an optical fibre network is
used to create a coherent quantum walk over 12 steps and 169 positions. Al-
though a range of other experimental proposals have been realised regarding
quantum walks, to date no search algorithms have been performed given that
the number of qubits required to perform any one of these algorithms is high.
In the future, as the the FTQC regime is approached the implementation of
quantum walk searches could be feasible.

References

[1] Hari Krovi et al. “Quantum Walks Can Find a Marked Element on
Any Graph”. In: Algorithmica 74.2 (Mar. 2015), pp. 851–907. issn:
1432-0541. doi: 10.1007/s00453-015-9979-8. url: http://dx.doi.
org/10.1007/s00453-015-9979-8.

7

https://doi.org/10.1007/s00453-015-9979-8
http://dx.doi.org/10.1007/s00453-015-9979-8
http://dx.doi.org/10.1007/s00453-015-9979-8

[2] Feng Xia et al. “Random Walks: A Review of Algorithms and Appli-
cations”. In: CoRR abs/2008.03639 (2020). arXiv: 2008.03639. url:
https://arxiv.org/abs/2008.03639.

[3] Mario Szegedy. “Quantum speed-up of Markov Chain based algorithms”.
In: Proceedings - Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS (Nov. 2004), pp. 32–41. doi: 10.1109/FOCS.
2004.53.

[4] David A. Meyer. “From quantum cellular automata to quantum lattice
gases”. In: Journal of Statistical Physics 85.5-6 (1996), pp. 551–574.
doi: 10.1007/bf02199356.

[5] Neil Shenvi, Julia Kempe, and K. Birgitta Whaley. “Quantum random-
walk search algorithm”. In: Physical Review A 67.5 (2003). doi: 10.
1103/physreva.67.052307.

[6] Andrew M. Childs, Edward Farhi, and Sam Gutmann. “An example
of the difference between quantum and classical random walks”. In:
Quantum Information Processing 1.1/2 (2002), pp. 35–43. doi: 10.
1023/a:1019609420309.

[7] Andris Ambainis. “Quantum Walk Algorithm for Element Distinct-
ness”. In: SIAM Journal on Computing 37.1 (2007), pp. 210–239. doi:
10.1137/s0097539705447311.

[8] Frédéric Magniez et al. “Search via Quantum Walk”. In: SIAM Journal
on Computing 40.1 (2011), pp. 142–164. doi: 10.1137/090745854.

[9] Peng Xue, Barry C. Sanders, and Dietrich Leibfried. “Quantum Walk
on a Line for a Trapped Ion”. In: Physical Review Letters 103.18 (2009).
doi: 10.1103/physrevlett.103.183602.

[10] Andreas Schreiber et al. “A 2D Quantum Walk Simulation of Two-
Particle Dynamics”. en. In: Science 336.6077 (Apr. 2012). arXiv: 1204.3555,
pp. 55–58. issn: 0036-8075, 1095-9203. doi: 10.1126/science.1218448.
url: http://arxiv.org/abs/1204.3555 (visited on 10/29/2021).

8

https://arxiv.org/abs/2008.03639
https://arxiv.org/abs/2008.03639
https://doi.org/10.1109/FOCS.2004.53
https://doi.org/10.1109/FOCS.2004.53
https://doi.org/10.1007/bf02199356
https://doi.org/10.1103/physreva.67.052307
https://doi.org/10.1103/physreva.67.052307
https://doi.org/10.1023/a:1019609420309
https://doi.org/10.1023/a:1019609420309
https://doi.org/10.1137/s0097539705447311
https://doi.org/10.1137/090745854
https://doi.org/10.1103/physrevlett.103.183602
https://doi.org/10.1126/science.1218448
http://arxiv.org/abs/1204.3555

	Classical random walks
	Search via a walking algorithm

	Quantum walk
	Quantum walk search algorithms
	Realising these Quantum Walks

