Pout example

$$
\sum_{i} M_{i}=11
$$

all eigenvalues were $0,1 / 3$
\rightarrow just calculate them

$$
\begin{aligned}
& M_{5}=\frac{1+z}{6}=\frac{10 \times 01+11 \times / h 1 \pm 10 \times 01 \mp 11 \times 1 \mid}{6} \\
&=\frac{1}{3} 10 \times 0 \left\lvert\, \Rightarrow \lambda=\frac{1}{3}\right., 0 \quad H\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) H \\
& \rightarrow \frac{1}{3}|1 \times 1| \rightarrow 1 \text { is } 11 \text { in any basis } \\
& \rightarrow 1
\end{aligned}
$$

$$
M_{1}=\frac{11+x}{2}=\frac{(1+x+1+1-x-1)+(1+x+1-1-x-1)}{6}
$$

$$
=\frac{1}{3}(1+x+1)
$$

projectors on these points

$$
\begin{aligned}
& P_{12}=\operatorname{Tr}\left(S M_{1}^{M_{2}}\right) \\
& =\operatorname{Tr}\left[\frac{1}{2}(\mathbb{1}+\vec{r} \cdot \vec{\sigma}) \frac{1}{6}(\mathbb{1}+X)\right] \\
& =\operatorname{Tr}\left[\frac { 1 } { 1 2 } \left(11+r_{0} g_{x}+r_{y} r_{y}+r_{2} \sigma_{z}^{\prime}+\right.\right. \\
& \begin{array}{l}
\left.\left. \pm X \pm r_{0} x^{2}+5_{2} \sigma^{r} x+r_{2} \sigma_{z} \sigma_{x}\right)\right]
\end{array} \\
& \frac{\operatorname{Tr}(x)=\operatorname{Tr}(y)=\operatorname{Tr}(z)=0}{r_{0}}\left[\rightarrow_{\text {this }} \text { is } y\right. \\
& =\frac{1}{12} \cdot 2 \pm \frac{r_{0}}{12} \cdot 2 h \sim z \\
& P_{1}=\frac{1}{6}+\frac{r_{0}}{6} \text { For } P_{2} \text { we only } \\
& P_{2}=\frac{1}{6}-\frac{r_{0}}{6} \text { changed a few } \text { signs (see above inblue). }
\end{aligned}
$$

We simplified the calculation by realizing that $X_{1} Y, Z$ are traceless. \rightarrow Therefore, for r_{0} we get

$$
p_{1}-p_{2}=\frac{r_{0}}{3} \Rightarrow r_{0}=3\left(p_{1}-p_{2}\right)
$$

$$
\begin{aligned}
& P_{34}= \operatorname{Tr}\left(S M_{3}\right) \quad \text { same calculation } \\
&= \operatorname{Tr}\left[\left(\frac{1}{2}(11+\vec{r} \cdot \vec{\sigma}) \frac{1}{6}(11 \pm Y)\right]\right. \\
&= \frac{1}{12} \operatorname{Tr}\left[11 \pm Y+r_{0} X \pm r_{0} X Y+r_{1} Y \pm r_{1} Y Y_{+}\right. \\
&\left.+r_{2} Z \pm r_{2} Z Y\right] \\
&= \frac{1}{12}\left(2 \pm 2 r_{1}\right)=\frac{1}{6}\left(1 \pm r_{1}\right) \\
& P_{3}=P_{4}=\frac{r_{1}}{3} \quad r_{1}=3\left(P_{3}-P_{4}\right) \\
& P_{5_{6}}= \operatorname{Tr}\left(S M_{5_{6}}\right) \\
&= \operatorname{Tr}\left[\frac{1}{2}(11+\vec{r} \cdot \vec{\sigma}) \frac{1}{6}(11 \pm Z)\right] \\
&= \frac{1}{6}\left(\left(\pm r_{2}\right) \Rightarrow r_{2}=3\left(P_{5}-P_{6}\right)\right.
\end{aligned}
$$

