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Another QNN is a quantum
Boltzmann machine (QBM). QBMs are defined by 
a graph with an associated Hamiltonian.

We then look for good parameters 
using gradient descent. However, 
the learning cannot proceed if 
the gradients are zero and if the gradients
become exponentially small,
the training is inefficient.

We call this a
barren plateau.

Does it mean that we can’t train QNNs 
with hidden units?

Not always. Exact statement of 
our results with all the assumptions 
can be found in our paper. QNNs
that don’t obey our assumptions 
*might* be trainable.

Barren plateaus are known to exist for various QNNs. 
Here we show that barren plateaus can be caused by excess

entanglement
between visible and hidden units.

If we measure only half of an entangled pair 
the outcome is completely random. 

If the outcome of our QNN is very 
entangled, measuring only a small 

number of qubits will have the same effect.

While we can’t implement a truly random unitary as a circuit, 
untrained parametrized circuits can be well approximated by 

2-designs. 

Popescu et al. showed that if we apply a Haar-random 
unitary to a state and trace out a large subsystem, the

result will be exponentially close to a maximally mixed state.

What about networks 
that are significantly 
less entangled?

We showed that QNNs satisfying an 
area law wouldn’t create the same barren
plateaus. This observation is
useful to keep in mind when designing
QNN architectures.

 We used the Hadamard lemma and a proof 
technique from Popescu et al. to show 
that not only will the state on visible units
of an untrained QNN be close to maximally
mixed state, but the gradient will also be 
exponentially small. Specifically, for an
objective function Ob and dimensions of
the visible and the hidden space Dv and Dh respectively, the Lipshitz
constant     corresponding to 
obeys
where the unitaries are parametrized by                              .    

Barren plateaus are not only an asymptotic phenomenon. We simulated small QNNs with
varied number of hidden units.
In Fig. a), we showed that the
trace distance between output
states and the maximally mixed
state decreases as the number
of hidden units grows. Fig b)
shows that the variance of
the gradient decreases with
increasing number of hidden units. We observed a similar decay 
when measuring the variance of the gradients for the QBMs.
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There are several ideas. One realization of a QNN is a parametrized 
circuit. Each unit is represented by a qubit 

and at the end we measure only qubits 
corresponding to output units. We will call these qubits 

visible and the rest of the qubits hidden. We then try to find 
a satisfying assignment of parameters with gradient descent.

input output

I know that traditional neural 
networks consist of layers of 
units. In the process of learning 
we try to find the best weights 
for the connections as qualified
by a objective function.

But how do we make neural 
networks quantum?

Let’s train some
quantum neural
networks (QNNs).
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The output state is
where 

visible

hiddden

hid
dd

en
Using perturbation theory, we obtain a similar scaling for quantum
Boltzmann machines. We showed that typical Hamiltonians generate 
thermal states that are close to the maximally mixed state. This
result also explains the observation that high numbers of hidden 
units usually do not increase the performance of
quantum Boltzmann machines. We also showed that
with additional assumptions on the partial
trace of the Hamiltonian, the gradients will be
exponentially suppressed .


