
Quantum error correction



• Error-free quantum computer – from a perspective from a software 

engineer on the top of the stack, there are no errors

• Error correction – approach to detecting and correcting errors, often 

phrased as an error-correcting code

• Fault tolerance – if an error appears, it can be detected and corrected



• Error-free quantum computer – from a perspective from a software 

engineer on the top of the stack, there are no errors

• Error correction – approach to detecting and correcting errors, often 

phrased as an error-correcting code

• Fault tolerance – if an error appears, it can be detected and corrected

under assumptions about the type of errors that can appear 



Noisy channel

The channel might be noisy and with probability p and error will 
occurs:

0 → 1
1 → 0

m=01101 m’=01001



Can you repeat that?

Alice can send the message 3 times which increases the probability

that Bob will be able to uncover the meaning.

m=01101

011010110101101 010011110101111

01001
11101
01111

01101



Problem

A probability of a bit flip is p. Having three bits, what is the probability 
that

• No bit flip occurs

• Only the first bit gets flipped.

• At most one bit gets flipped.

How would the probabilities change with n bits?



Independent errors

We need to make an assumptions that individual errors will be 
independent of each other. This is not always true in practice (cosmic 

rays).



Repetition code

Encode 0𝐿 → 000 (logical 0)

Encode 1𝐿 → 111 (logical 1)

• Decode 000, 001, 010, 100 → 0

• Decode 111, 011, 110, 101 → 1

Can correct 1 bit-flip.

If the probability of a bit flip is 𝑝 < 1/2, what is the probability of an 
error before and after decryption with repetition code? 



Hamming distance

m1

m2

m3

m4

m5

m5

Hamming distance between two 
bitstrings is the number of bits they 
differ. E.g. 0101, 0011 have Hamming 
distance 2, 0101 and 1110 have 
Hamming distance 3.

If the Hamming distance between 
messages is large, 
we can easily correct any errors



Introduce redundancy
M1 = Errorcorrectingcodes
M2 = Everyonefailstheclass

Errrrcorvctingkodes very likely came 
from message m1 instead of two m2.

We could send 1 for M1 or M2 for M2 
but the redundancy in English allows us 
to correct for errors



Codewords
Even if the original messages were close, 
we can encode them into “codeword” 
that are far from each other in Hamming 
distance. 

Standard notation: [n,k,d]
Encode n bits/qubits into k bits/qubits 
with distance d. Distance is the 

minimum distance between distinct 
codewords

People use [n,k,d] for classical codes and 
[[n,k,d]] for quantum ones.



Can we do the same for quantum states?



Can we do the same for quantum states?

1. No cloning theorem

2. Measuring destroys quantum information

3. Instead of simple bitflips, we have a continuum of errors.



Yes, but it’s complicated

1. No cloning theorem – only clone orthogonal states

2. Measuring destroys quantum information – measure ONLY errors

3. Instead of simple bitflips, we have a continuum of errors – errors 
can be discretized



Quantum errors in the Z basis (bitflips)

• We don’t need to copy an unknown state

𝑎ȁ ۧ0 +𝑏ห ۧ1 → 𝑎ȁ ۧ000 +𝑏ȁ ۧ111

• An error would flip one of the qubits but we still have two to decide 
majority.



Decoding

𝑎ȁ ۧ0 +𝑏ห ۧ1 → 𝑎ȁ ۧ000 +𝑏ȁ ۧ111

How do we find out if there is an error without destroying the state? 
(syndrome extraction)?

Observation: if we measured all three registers, they would always 
agree.



Decoding

𝑎ȁ ۧ0 +𝑏ห ۧ1 → 𝑎ȁ ۧ000 +𝑏ȁ ۧ111

Solution: only measure if one of the registers disagrees:

Distinguish between 4 possibilities

• No error ȁ ۧ000 , ȁ ۧ111  

• Error (on the first qubit) ȁ ۧ100 , ȁ ۧ011

• Error (on the second qubit) ȁ ۧ010 , ȁ ۧ101

• Error (on the last qubit) ȁ ۧ001 , ȁ ۧ110

Projective measurement
on of the four subspaces 



Parity measurement

• ZZ return 0 if two bits (qubits) are the same and 1 if they are opposite

{ȁ ۧ00 ,ȁ ۧ11 } + 1 subspace

{ȁ ۧ01 ,ȁ ۧ10 } - 1 subspace

• Measure Z1Z2, Z1Z3, Z2Z3

• Z1Z2 =Z1Z3=Z2Z3=1 no errors

• Z1Z2 =Z1Z3=-1 and Z2Z3=1 error on the first qubit

• Z1Z2 =1, Z1Z3=-1 and Z2Z3=-1 error on the third qubit

• Z1Z2 =-1, Z1Z3=1 and Z2Z3=-1 error on the second qubit



Alternative decoding

• No error 
𝑎ȁ ۧ000 +𝑏ȁ ۧ111 → 𝑎ȁ ۧ0 +𝑏ȁ ۧ1

• Bitflip on the first qubit 
𝑎ȁ ۧ100 +𝑏ห ۧ011 → 𝑎ȁ ۧ111 +𝑏ห ۧ011 → 𝑎ȁ ۧ011 +𝑏ȁ ۧ111 → 𝑎ȁ ۧ0 +𝑏ȁ ۧ1



Phase flip errors

ȁ ۧ+  → ȁ ۧ−
ȁ ۧ−  → ȁ ۧ+

• The same in X basis

ȁ ۧ+ 𝐿 → ȁ ۧ++ + =
ȁ ۧ0 +ȁ ۧ1

2

ȁ ۧ0 +ȁ ۧ1

2

ȁ ۧ0 +ȁ ۧ1

2

ȁ ۧ− 𝐿 → ȁ ۧ−− − =
ȁ ۧ0 −ȁ ۧ1

2

ȁ ۧ0 −ȁ ۧ1

2

ȁ ۧ0 −ȁ ۧ1

2



Can a code correct both Z and X errors?

• Concatenate the phase flip and the bitflip code 

• First phase flip:

• Then bitflip

ȁ ۧ0 𝐿 →
ȁ ۧ0 +ȁ ۧ1

2

ȁ ۧ0 +ȁ ۧ1

2

ȁ ۧ0 +ȁ ۧ1

2

ȁ ۧ1 𝐿 →
ȁ ۧ0 −ȁ ۧ1

2

ȁ ۧ0 −ȁ ۧ1

2

ȁ ۧ0 −ȁ ۧ1

2

ȁ ۧ0 +ȁ ۧ1

2

ȁ ۧ0 +ȁ ۧ1

2

ȁ ۧ0 +ȁ ۧ1

2
 →

ȁ ۧ000 +ȁ ۧ111

2

ȁ ۧ000 +ȁ11 ۧ1

2

ȁ00 ۧ0 +ȁ11 ۧ1

2
ȁ ۧ0 −ȁ ۧ1

2

ȁ ۧ0 −ȁ ۧ1

2

ȁ ۧ0 −ȁ ۧ1

2
 →

ȁ ۧ000 −ȁ11 ۧ1

2

ȁ00 ۧ0 −ȁ ۧ111

2

ȁ00 ۧ0 −ȁ11 ۧ1

2



Shor’s 9 qubit code

encoding

First create the phase flip code. 
Then encode each qubit with 

the bitflip code. 

Concatenate codes



Exercise

• Verify that measuring Z1Z2 , Z2Z3, Z3Z1, Z4Z5 , Z5Z6, Z6Z4, Z7Z8 , Z8Z9, Z9Z7 
will detect bitflip errors  (just do a few)

• Verify that measuring X1 X2 X3 X4 X5 X6 , X4 X5 X6 X7 X8 X9 and X7 X8 X9 X1 
X2 X3 can detect phase flip errors. (just do one)



Logical operations on the 9-qubit code

• What physical operations do we need to apply to the code to apply  
logical operations?

• Simplest operations X, Z, other gates can be constructed from them 
and measurements (fault-tolerant construction)

• Logical X: ȁ ۧ0 𝐿 → ȁ ۧ1 𝐿



ȁ ۧ0 𝐿= 
ȁ ۧ000 +ȁ ۧ111

2

ȁ ۧ000 +ȁ11 ۧ1

2

ȁ00 ۧ0 +ȁ11 ۧ1

2

ȁ ۧ1 𝐿= 
ȁ ۧ000 −ȁ11 ۧ1

2

ȁ00 ۧ0 −ȁ ۧ111

2

ȁ00 ۧ0 −ȁ11 ۧ1

2

X

Z



Correcting errors in any basis 

• Theorem: If a quantum code can correct errors of type A and type B it 
can also correct a linear combination of errors aA + bB

• If we know how to correct X, Z and XZ errors we will be able to correct  
for any unitaries.



Stabilizer formalism

• Due to Daniel Gottesman.

• A very useful way of representing quantum states for error correction.

• Characterize state/states.

•  Language of error correction.



Groups (abstract algebra refresher)

• set of elements (A,B<C,…) and an operation(∘) between them

• The set is closed wrt the operations, 𝐴 ∘ 𝐵 always belongs to the set

• Includes an identity 𝐴 ∘ 𝕀 = 𝐴 for all A

• Every element has an inverse in the set 𝐴°𝐴−1 = 𝕀

Examples:

• {1,-1}, ×

• ℤ, +

• Unitary matrices with matrix multiplication



The Pauli group 

• 𝑃1 − single qubit matrices with multiplication
{±𝕀, ±𝑋, ±𝑌, ±𝑍, ±𝑖𝕀, ±𝑖𝑋, ±𝑖𝑌, ±𝑖𝑍}

Including i ensures that the set is closed under multiplication. Half of 
the terms commute and half anti-commute. 

Note that 𝑌 = 𝑖𝑍𝑋.



The stabilizer group

Many states can be described by Paulis that stabilize them – if we apply 
a Pauli on our state, we get the same state back. Take

It can be uniquely identified as +1 eigenstate of the operators 𝑋1𝑋2, 
𝑍1𝑍2 , i. e.  𝑋1𝑋2 ȁ ۧ𝜓 = ȁ ۧ𝜓 , 𝑍1𝑍2 ȁ ۧ𝜓 = ȁ ۧ𝜓 .

We then say that S is the stabilizer of 𝑉𝑠 if S are the Paulis that stabilize 
as the set of 𝑛-qubit states 𝑉𝑠 . 

Stabilizers form a group.



Group generators

• Set of operators g1, … ,gm  such that such that (repeated) 
application of the generators on themselves and each other is 
capable of creating all the elements in the group. 

• X & Z are generators of the Pauli group.

• E.g. 𝑍𝑍 = 𝕀, 𝑍𝑋 = 𝑖𝑌, 𝑍𝑋𝑍 = −𝑋, 𝑍𝑋𝑍𝑋 = −𝕀, …



Stabilizers for Shor 9-qubit code

Generators of the stabilizer group

•  Z1Z2 , Z2Z3, Z4Z5 , Z5Z6, Z7Z8 , Z8Z9, X1 X2 X3 X4 X5 X6 , X4 X5 X6 X7 X8 X9

• These operators uniquely define the error-free subspace.

• Exercise: show that the above operators commute (i.e. AB=BA)



Normalizer of Paulis

• What unitaries map Paulis onto Paulis under conjugation?

𝑈𝑃𝑛𝑈+ = 𝑃𝑛

• All Paulis have this property.

• Also gates H, CNOT, S (phase)



Exercise

• Verify 𝐻𝑋𝐻 = 𝑍, 𝐻𝑍𝐻 = 𝑋

• Compute:
𝐶𝑁𝑂𝑇 (𝑋 ⊗ 𝕀) 𝐶𝑁𝑂𝑇
𝐶𝑁𝑂𝑇 (𝕀 ⊗ 𝑋)𝐶𝑁𝑂𝑇



The Clifford group

The normalizer of 𝑃𝑛, includes by X,Z, S,H, CNOT and their product.

Does not include T or Toffoli gates.

Allows us to track quantum states during (certain computation).



Gottesman-Knill theorem

Circuits that consists only of

• Qubit preparation in the computational basis

• Clifford gates (H,S, CNOT, Paulis) 

• Measurement in the computational basis

can be efficiently classically simulated.

Algorithm due to Aaronson and Gottesman.

Very entangled states are classically simulable. Entanglement alone does not 
lead to quantum speedup.



Example

• Start with ȁ ۧ00  stabilized with Z1, Z2.

• Apply Hadamard gate:
𝑍1 ⟶ 𝑋1

𝑍2 ⟶ 𝑍2

• Apply CNOT gate
𝑋1 ⟶ 𝑋1𝑋2
𝑍2 ⟶ 𝑍1𝑍2

Stabilizers of 
ȁ ۧ00 +ȁ1 ۧ1

2
are 𝑋1𝑋2, 𝑍1𝑍2 as before



Fault-tolerant computation

• Errors propagate and accumulate during computation 

• If the noise obeys reasonable physical assumptions ( i.e. uncorrelated) 
and bellow a certain thresholds, we may achieve arbitrarily precise 
computation using redundancy

• Logical states are encoded into multiple qubits

• Logical gates are performed as fault-tolerant operations requiring 
more gates and qubits.



Other error correcting codes

• 5 qubit code – smallest code to correct a single error

• Topological codes
• Nontrivial loops apply operations

• Surface codes
• Ideal for qubits on a lattice

• Expected way to fault-tolerance



A taste of what is actually required

Gidney and Fowler


	Slide 1: Quantum error correction
	Slide 2
	Slide 3
	Slide 4: Noisy channel
	Slide 5: Can you repeat that?
	Slide 6: Problem
	Slide 7: Independent errors
	Slide 8: Repetition code
	Slide 9: Hamming distance
	Slide 10: Introduce redundancy
	Slide 11: Codewords
	Slide 12: Can we do the same for quantum states?
	Slide 13: Can we do the same for quantum states?
	Slide 14: Yes, but it’s complicated
	Slide 15: Quantum errors in the Z basis (bitflips)
	Slide 16: Decoding
	Slide 17: Decoding
	Slide 18: Parity measurement
	Slide 19: Alternative decoding
	Slide 20: Phase flip errors
	Slide 21: Can a code correct both Z and X errors?
	Slide 22: Shor’s 9 qubit code
	Slide 23: Exercise
	Slide 24: Logical operations on the 9-qubit code
	Slide 25
	Slide 26: Correcting errors in any basis 
	Slide 27: Stabilizer formalism
	Slide 28: Groups (abstract algebra refresher)
	Slide 29: The Pauli group P n 
	Slide 30: The stabilizer group
	Slide 31: Group generators
	Slide 32: Stabilizers for Shor 9-qubit code
	Slide 33: Normalizer of Paulis
	Slide 34: Exercise
	Slide 35: The Clifford group
	Slide 36: Gottesman-Knill theorem
	Slide 37: Example
	Slide 38: Fault-tolerant computation
	Slide 39: Other error correcting codes
	Slide 40: A taste of what is actually required

