Exercise

Verify that Pauli X is a Hermitian operator and compute its eigenvalues
and eigenvectors.

$$
x=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$\operatorname{det}(x-\lambda 11)=0 \quad \begin{array}{ll}x \text { is } \\ \text { eigenval }\end{array}$

$$
\left|\begin{array}{cc}
-x & 1 \\
1 & -x
\end{array}\right|=x^{2}-1=0
$$

$$
x= \pm 1
$$

eigenvalues
X is real It is Hermitian.

$$
x^{\top}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=x
$$

$$
\begin{aligned}
& X \vec{\mu}=x \vec{\mu} \text { eigenvector } \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{a}{b}^{+1}=\binom{a}{b} \Rightarrow \begin{array}{l}
b=a \\
a=b \\
\\
|a|^{2}+|b|^{2}=1
\end{array} \\
& \rightarrow u_{+1}=\frac{1}{\sqrt{2}}\binom{1}{1} \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
b
\end{array}\right)=-\binom{a}{b} \Rightarrow \begin{array}{l}
b=-a \\
a=-b \\
|a|^{2}+|b|^{2}=1
\end{array} \\
& \rightarrow \mu_{-1}=\frac{1}{\sqrt{2}}\binom{1}{-1}
\end{aligned}
$$

Exercise

Exercise

Let $|\Phi\rangle_{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)$. Compute $\operatorname{Tr}_{A}\left(|\Phi\rangle\left\langle\left.\Phi\right|_{A B}\right)\right.$ and

$$
\begin{aligned}
& \operatorname{Tr}_{B}\left(| \Phi \rangle \langle \Phi | _ { A B }) \quad \left\langle\left.\phi\right|_{A B}=\frac{1}{\sqrt{2}}\left(\left\langle0 | _ { A } \otimes \left\langle\left.O\right|_{B}+\left\langle\left. 1\right|_{A} \otimes\left\langle\left. 1\right|_{B}\right)\right.\right.\right.\right.\right.\right. \\
& |\Phi X \Phi|_{A B}=\frac{1}{2}\left(|0 \times 0|_{A}|0 \times 0|_{B}+|0 \times 1|_{A} \otimes|0 \times 1|_{B}+|1 \times 0| \otimes|1 \times 0|_{B}+|1 \times 1| \odot|1 \theta 1|\right.
\end{aligned}
$$

Compute $\operatorname{Tr}_{A}^{(-)}$for each term

$$
\begin{aligned}
& \operatorname{Tr}_{A}(|0 \times 0| \otimes|0 \times 0|)=\langle 0 \mid 0\rangle|0 \times 0|_{B}=|0 \times 0| \\
& \operatorname{Tr}_{A}(11 \times 1|\otimes| 1 \times 1 \mid)=\langle 1 \mid 1\rangle|1 \times 1|_{B}=|1 \times 1| \\
& \operatorname{Tr}_{A}(10 \times 1|\otimes| 0 \times 1 \mid)=\langle 0 \mid 1\rangle|0 \times 1|_{B}=0 \\
& \operatorname{Tr}_{A}(|1 \times 0| \otimes|1 \times 0|)=\langle 1 \mid 0\rangle|1 \times 0|_{B}=0
\end{aligned}
$$

Together $\operatorname{Tr}_{A}\left(|\Phi X \Phi|_{A B}\right)=\frac{1}{2}\left(|O X O|+\left|1 X_{1}\right|\right)=\frac{1}{2}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ From symmetry, Tr_{B} will be the same.

Exercise

There are three necessary and sufficient criteria that a matrix corresponds to a valid description to a quantum state. Show that

$$
\begin{equation*}
\left.\rho:=\sum_{i}^{\mathscr{p}_{i}} \psi_{i}\right\rangle\left\langle\psi_{i}, \quad \sum_{i}^{\text {prob }}, p_{i}=1\right. \tag{1}
\end{equation*}
$$

satisfies all three of them

1. ρ is Hermitian ${ }^{1}$

$$
\rho^{\dagger}=\Sigma_{i} p_{i}^{*}\left|\psi_{i} x \psi_{i}\right|=\rho
$$

2. ρ is positive semi-definite ${ }^{2} P_{i}$ are eigenvalues and they
3. $\operatorname{Tr}[\rho]=1$. are all non-negative
In the basis of $\left\{\psi_{i}>\right\}_{1} \operatorname{Tr}[S]=\sum ; p_{i}=1$
${ }^{1} \mathrm{~A}$ hermitian matrix A satisfies $A^{\dagger}=A$.
${ }^{2}$ Eigenvalues of a positive semi-definitive matrix are real and equal to 0 or positive.

Exercise

Define purity of a quantum state as $\operatorname{Tr}\left[\rho^{2}\right]$. Show that unitary operations
preserve purity, i.e. a pure state never gets mapped onto a mixed state and vice versa.
Apply a unitary on $P: S \rightarrow U^{+} \rho U$

$$
\begin{aligned}
\operatorname{Tr}\left[\left(u^{+} \rho u\right)\left(u^{+} \rho u\right)\right] & =\operatorname{Tr}\left[u^{+} \rho^{2} u\right]=\operatorname{Tr}\left[s^{2} v u^{+}\right] \\
& =\operatorname{Tr}\left[\rho^{2}\right]
\end{aligned}
$$

No cloning theorem

Theorem (No-Cloning theorem)
There is no unitary operation $U_{\text {copy }}$ on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ such that for all
$|\psi\rangle_{A} \in \mathcal{H}_{A}$ and $|0\rangle_{B} \in \mathcal{H}_{B}$

$$
\begin{equation*}
U_{\text {copy }}\left(|\phi\rangle_{A} \otimes|0\rangle_{B}\right)=e^{i f(\phi)}|\phi\rangle_{A} \otimes|\phi\rangle_{B} \tag{2}
\end{equation*}
$$

for some number $f(\phi)$ that depends on the initial state $|\phi\rangle$.
Proof: in the lecture notes

