Assessment 0 for 41076: Methods in Quantum Computing

This is an optional problem set for students who want to refresh their knowledge of elementary quantum computing and linear algebra.

- 1. Do the following expressions correspond to normalized quantum states?
 - (a) $\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}$ (b) $\frac{1}{2}|0\rangle + \frac{-1}{2}|1\rangle + \frac{i}{2}|2\rangle + \frac{-i}{2}|3\rangle$ (c) $\begin{pmatrix} 0.3\\ 0.7 \end{pmatrix}$
- 2. Suppose that we perform a measurement in the computational basis on the state $\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$. What states can we measure and what would be the probabilities for each measurement?
- 3. Consider the matrix $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Which of the following statements are true?
 - (a) X is an identity.
 - (b) X is symmetric.
 - (c) X is diagonal.
 - (d) X is positive semi-definite.
 - (e) X is unitary.
 - (f) X is hermitian.
- 4. Write the operator $X \otimes I$ as a 4×4 matrix in the computational basis.

5. Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
.

- (a) Compute A^2
- (b) What are A's eigenvalues?