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Lecture 6
Methods in Quantum Computing



Measurement and Tomography



Computation is Classical In, Classical Out
Quantum computations are sandwiched by preparation and measurement

Preparation: classical information —> quantum state 
(usually in the form of all-zero state)


Measurement: quantum state —> classical information 
(usually in “computational basis”, i.e. zeroes and ones)


Measurement is a bit different from preparation: outcome is random. 
Preparation can also be random, but usually isn’t.



Randomness = Uncertainty
Measuring a non-computational-basis state yields uncertain outcome

Uncertain outcomes are represented by probability distributions.

Simplest example: Bernoulli trials (a.k.a. coin flips)

The outcome of the flip depends largely, but not entirely on the physical 
properties of the coin. The random thing is not the coin, but the flip.


N flips: H heads, T tails, H + T = N. 
Define h = H/N, t = T/N, h + t = 1. 
In limit as N —> ∞, a fair coin would have h = t = 1/2. 
Unfair coin could have other distributions.




Probability Distributions
Sets of numbers assigned to a random process that summarise statistics

Coin tosses: set of outcomes = {heads, tails}. 
Probability distribution: Pr(heads) and Pr(tails); Pr(heads) + Pr(tails) = 1 
“Expected” number of heads = Pr(heads) ⨉ no. tosses


Die rolls: set of outcomes = {1, 2, 3, 4, 5, 6} 
Probability distribution: Pr(1), Pr(2), Pr(3), Pr(4), Pr(5), Pr(6); sum = 1 
“Expected” number of 6s = Pr(6) ⨉ no. throws



Quantum Measurements
Random processes that depends on quantum state and measurement instrument

Recall that we describe quantum measurements using 
positive-operator-valued measure (POVM). 
i.e. set of positive operators that add up to identity operator. 
The POVM represents the physics of a measurement.


The outcome of a measurement depends on both the measurement 
instrument and the quantum state as represented by a density matrix. 
POVM = {M1, M2, …, Mn} & state = ρ ⟹ Pr(k) = Tr(Mkρ)



Example
Measuring single pure qubit in computational basis = Bernoulli trial









Distribution of Bernoulli trial is determined by .

|ψ⟩ = α |0⟩ + β |1⟩; ρ = |ψ⟩⟨ψ | = [ |α |2 αβ*
α*β |β |2 ]

POVM = { |0⟩⟨0 | , |1⟩⟨1 |} = {[1 0
0 0], [0 0

0 1]}
Pr(0) = Tr( |0⟩⟨0 |ρ) = ⟨0 |ρ |0⟩ = |α |2 ; Pr(1) = |β |2

ρ



Observation
Cannot perfectly reconstruct state from measurement statistics




Both states have , meaning we can distinguish them!

Similarly, cannot distinguish between any of . 

The measurement  is “missing” information about state. 
This measurement is “tomographically incomplete”.
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Quantum State Tomography
Given many copies of a state, figure out its density operator

Given: black box with button. Push the button, get fixed . 
Goal: figure out .

Procedure: 
1. Choose “tomographically complete” measurement.

2. Press button, measure state, and record outcome.

3. Enough measurements recorded? YES: continue, NO: go to 2.

4. Do some statistics to figure out state.


ρ
ρ



Exercise
Qubit Tomography

POVM: 


State: 


Show (1) that each element of the POVM is a positive operator, and 
(2) that  can be reconstructed from the measurement statistics.

{ I + X
6

,
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6
,

I + Y
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,
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6
,

I + Z
6

,
I − Z

6 }
ρ = [ρ00 ρ01

ρ10 ρ11]

ρ



Matrix Norms and State Fidelities



How “Close” are Two Quantum States?
And how do we measure “distance”?

Tomographic reconstruction of a state works perfectly 
only if we have infinite measurement data.


In the real world, we gather a large-but-not-infinite amount of data. 
The tomographic reconstruction is approximate. 
More data yields better approximation.


Estimated state  is a good approximation to  if  is nearly zero.̂ρ ρ ̂ρ − ρ



“Closeness” of Two Vectors = “Size” of Difference
In general, we can define a “metric” in terms of a “norm”

The “size” of a matrix  is written  and is a positive real number. 
Must also satisfy  for any complex number  
as well as the “triangle inequality” .


Any function  satisfying the above axioms 
is called a “norm” for the (complex) vector space . 
 
A vector space equipped with a norm is a “normed” vector space.

A ∥A∥
∥αA∥ = |α |∥A∥ α

∥A + B∥ ≤ ∥A∥ + ∥B∥

∥ ⋅ ∥ : V → ℝ≥0
V



Example
Euclidean norm vs Manhattan taxicab norm

Alice

Bob As the bird flies, Alice and Bob are  units apart.

But a taxicab must drive 6 units.

Same vector space, different norms. 

Alice at (0,0), Bob at (3,3). 

Bird’s distance: 


Taxi’s distance: 


Bird’s distance = -norm of difference vector = Euclidean norm

Taxi’s distance = -norm of difference vector = Manhattan taxicab norm

3 2

(3 − 0)2 + (3 − 0)2 = 2 × 32 = 3 2
|3 − 0 | + |3 − 0 | = 3 + 3 = 6

ℓ2

ℓ1

-norm of vector :  ℓp ⃗x = (x1, x2, …, xn) (
n

∑
i=1

|xi |
p )

1/p

lim
p→∞

∥ ⃗x ∥p = max{x1, …, xn}



Equivalence of metrics
Different norms disagree quantitatively but not qualitatively (i.e. topologically)

If the bird would fly one unit between two points 
(from centre of circle to its circumference), 
the taxi would drive between  and  units 
(between smaller and larger diamonds). 
 
Knowing the bird-distance implies bounds on the taxi-distance. 
The taxi-distance varies around the circle, 
so there is no direct conversion between the norms.


But both distances agree about whether two points are close together. 
This is why they are “equivalent” metrics: 
both normed vector spaces have the same topology.

1 2



Schatten p-Norms
A convenient set of matrix norms

Idea: calculate p-norm of the eigenvectors of a matrix. 




By unitary invariance, . [Exercise: check this.]


Hence: Schatten p-norm  of any matrix  (not necessarily diagonalisable) is .


Quantum computing people like the 1-norm because  for density operators.

∥A∥p = ∥ ⃗λ ∥p = (∑
i

|λi |
p )

1/p

= Tr

|λ1 | 0 ⋯ 0
0 |λ2 | ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ |λn |

p 1/p

= (Tr Λp)1/p

Λ = A†A =: |A |

∥A∥p A (Tr |A |p )1/p

∥ρ∥1 = 1



Trace Distance
Standard distance for quantum states, induced by the Schatten 1-norm

This number is between 0 and 1 and extends a standard distance 
measure on probability distributions, the total variation distance (TVD).


Intuitively, TVD calculates how frequently two distributions “disagree” 
with one another. (Many subtleties being avoided here.)


Trace distance is TVD maximised over all possible measurements.

dist(ρ, σ) :=
1
2

∥ρ − σ∥1



State Fidelity
Very common figure-of-merit for quantum states

If  we have fidelity = 1, not 0 as with metric. 
Sometimes people refer to the “infidelity”: , 
which is a metric.


If both states are pure, i.e. , 
we have .


ρ = σ
1 − F(ρ, σ)

ρ = |ψ⟩⟨ψ | , σ = |ϕ⟩⟨ϕ |
F(ρ, σ) = |⟨ϕ |ψ⟩ |

F(ρ, σ) := Tr ρσ ρ



Relationship Between Fidelity and Trace Distance
Fuchs and van de Graaf, arXiv:quant-ph/9712042




That is to say, the trace distance and the infidelity are equivalent metrics on the 
space of quantum states.


Hence they agree in a qualitative sense even when they disagree quantitatively.

 
Note that two pairs of states can have the same fidelity but different trace 
distances, and vice-versa. Just as with the Euclidean and taxicab norms.

1 − F(ρ, σ) ≤
1
2

∥ρ − σ∥1 ≤ 1 − F(ρ, σ)2



Distinguishing Quantum States



The Quantum State Discrimination Problem
A foundational quantum information processing task

As a way of putting together the concepts we have encountered so far, we now 
consider the following task. I’ll use some language I haven’t carefully defined.


Suppose Alice generates a random variable  according to the 
probability distribution . Bob knows that if she obtains outcome 

, she will prepare state . After preparing the state, Alice sends it to Bob.


Bob’s job is to figure out Alice’s state label  with maximum success probability.

X = x1, …, xn
Pr(X = xk) = pk

xk ρk

k



xk



ρk



ρk



ρk

k = ?



Bob’s Strategy
(one possible strategy, anyway)

Bob will select a POVM  containing the same number  of 
elements as Alice’s “ensemble” .


If Bob obtains outcome , he will guess that Alice sent  and 
hence Alice obtained .


Bob’s probability of success is .

Π = {Π1, …, Πn} n
{(p1, ρ1), …, (pn, ρn)}

k ρk
X = xk

n

∑
i=1

pi Tr(Πiρi)



Holevo-Helstrom Theorem
Maximum success probability for  relates to trace distancen = 2

Suppose Alice chooses the ensemble  and 
Bob tries to determine if  using the procedure from the previous slide.


(It turns out to be the best possible procedure.) 

Then Bob can correctly determine  with probability  

and can do no better than this.


In particular, if  and  is the trace distance between  and , 

then Bob’s success probability is at best .

{(p1, ρ1), (p2, ρ2)}
k = 1,2

k Γ =
1
2

+
1
2

∥p1ρ1 − p2ρ2∥

p1 = p2 =
1
2

d ρ1 ρ2

1
2

+
d
2



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

p1 Tr Π1ρ1 + p2 Tr Π2ρ2



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

( 1
2

+
1
2 ) p1 Tr Π1ρ1 + ( 1

2
+

1
2 ) p2 Tr Π2ρ2



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2

p1 Tr Π1ρ1 +
1
2

p1 Tr Π1ρ1 +
1
2

p2 Tr Π2ρ2 +
1
2

p2 Tr Π2ρ2



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2

p1 Tr Π1ρ1 +
1
2

p1 Tr(I − Π2)ρ1 +
1
2

p2 Tr Π2ρ2 +
1
2

p2 Tr(I − Π1)ρ2



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2

p1 Tr Π1ρ1 +
1
2

p1 Tr ρ1 −
1
2

p1 Tr Π2ρ1 +
1
2

p2 Tr Π2ρ2 +
1
2

p2 Tr ρ2 −
1
2

p2 Tr Π1ρ2



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2

p1 Tr Π1ρ1 +
1
2

p1 Tr ρ1
⏟

1

−
1
2

p1 Tr Π2ρ1 +
1
2

p2 Tr Π2ρ2 +
1
2

p2 Tr ρ2
⏟

1

−
1
2

p2 Tr Π1ρ2



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2

p1 Tr Π1ρ1 +
1
2

p1 −
1
2

p1 Tr Π2ρ1 +
1
2

p2 Tr Π2ρ2 +
1
2

p2 −
1
2

p2 Tr Π1ρ2



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2 (p1 + p2) +

1
2

p1 Tr Π1ρ1 −
1
2

p1 Tr Π2ρ1 +
1
2

p2 Tr Π2ρ2 −
1
2

p2 Tr Π1ρ2



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2 (p1 + p2)

1

+
1
2

p1 Tr Π1ρ1 −
1
2

p1 Tr Π2ρ1 +
1
2

p2 Tr Π2ρ2 −
1
2

p2 Tr Π1ρ2



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2

+
1
2

p1 Tr Π1ρ1 −
1
2

p1 Tr Π2ρ1 +
1
2

p2 Tr Π2ρ2 −
1
2

p2 Tr Π1ρ2



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2

+
1
2

p1 Tr Π1ρ1 −
1
2

p2 Tr Π1ρ2 +
1
2

p2 Tr Π2ρ2 −
1
2

p1 Tr Π2ρ1



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2

+
1
2

Tr Π1(p1ρ1) −
1
2

Tr Π1(p2ρ2) +
1
2

Tr Π2(p2ρ2) −
1
2

Tr Π2(p1ρ1)



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2

+
1
2

Tr Π1(p1ρ1 − p2ρ2) +
1
2

Tr Π2(p2ρ2 − p1ρ1)



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2

+
1
2

Tr Π1(p1ρ1 − p2ρ2) −
1
2

Tr Π2(p1ρ1 − p2ρ2)



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2

+
1
2

Tr(Π1 − Π2)(p1ρ1 − p2ρ2)



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2

+
1
2

Tr(Π1 − Π2)(p1ρ1 − p2ρ2) ≤
1
2

+
1
2

Tr |p1ρ1 − p2ρ2 | ≡ Γ



Holevo-Helstrom Theorem – Proof
Cannot do better than  chance of successΓ

Assume Bob chooses the POVM . 
Remember that .


Bob’s success probability is


{Π1, Π2}
Π1 + Π2 = I

1
2

+
1
2

Tr(Π1 − Π2)(p1ρ1 − p2ρ2) ≤
1
2

+
1
2

Tr |p1ρ1 − p2ρ2 | ≡ Γ
Prove this!



Kraus Decompositions and 
Gate Fidelities



From States to Channels
Mixed states generalise pure states, quantum channels generalise unitary operators

A quantum channel is a completely positive, trace preserving map. 
Function: operators —> operators. 
Trace preserving: output has same trace as input.


Positive map: positive operators —> positive operators 
Completely positive map: density operator —> density operator 
even when acting on a piece of the system instead of the whole system 

(Some positive maps will not return density matrix if acting on part of an entangled state.)



Simple Examples of Quantum Channels
You will see these frequently in practice

Unitary channel: 


Dephasing channel: 


Depolarising channel: 

ρ ↦ UρU†

ρ ↦ (1 − p)ρ + pZρZ; 0 ≤ p ≤ 1

ρ ↦ (1 − p)ρ + pπ; 0 ≤ p ≤ 1, π max. mixed



Kraus Representation
All quantum channels can be written in a similar way

Every quantum channel can be written in the form

, where .


The set  are called the Kraus operators of the quantum channel .

ℰ(ρ) = ∑
i

KiρK†
i ∑

i

K†
i Ki = I

{Ki} ℰ



Relevance for Practical Quantum Computing
Can’t actually do unitary operators in real life!

We expect imperfections in our implementations of quantum gates.


That is to say, we may wish to implement a gate  
but instead we implement some non-unitary quantum channel.


Can try to compare our implemented channel with desired gate 
much as we compared two density matrices with quality metrics like 
trace distance or state fidelity.

ρ ↦ UρU†



How to compare ideal gates to real gates?
Depends what state you feed in!

Compare two very different single-qubit gates: I vs X. 
i.e.  vs .


On the one hand, can easily distinguish these two gates with input . 
Whereas I sends this to , X sends this to .

This pair of states is perfectly distinguishable.


On the other hand, cannot distinguish these two gates with input . 
Output is  for both I and X.

ρ ↦ ρ ρ ↦ XρX

ρ = |0⟩⟨0 |
|0⟩⟨0 | |1⟩⟨1 |

ρ = | + ⟩⟨ + |
| + ⟩⟨ + |



Average Gate Fidelity
Common figure-of-merit for experimental quantum computing

Idea is to calculate the average of all state fidelities.


Definition: (fidelity of channel  with respect to the identity channel)





E.g. Average fidelity of depolarising channel  is


ℰ

F(ℰ) := ∫ dψ ⟨ψ |ℰ(ψ) |ψ⟩

ℰ(ρ) = (1 − p)ρ + p ⋅ I/d

F(ℰ) = ∫ dψ ⟨ψ |ℰ( |ψ⟩⟨ψ | ) |ψ⟩ = (1 − p) + p/d = 1 −
d − 1

d
⋅ p



Nielsen’s Formula
A powerful tool for calculating average fidelities

[arXiv:quant-ph/0205035] — see eq. (17)


Given an orthogonal unitary basis  for the space of operators, 

the average fidelity of a channel  is .


In particular, if the channel is unitary (i.e. ), 

then 

{Uj}

ℰ
d2 + ∑j Tr(U†

j ℰ(Uj))

d2(d + 1)

ℰ(ρ) = VρV†

F =
d2 + ∑j Tr (U†

j VUjV†)
d2(d + 1)

=
d2 + ∑j |Tr(UjV) |2

d2(d + 1)
=

d + |Tr(V) |2

d + d2



Exercise
Fidelity of Toffoli w.r.t. Identity

The hottest quantum startup promises to do quantum computing by 
implementing Hadamard and Toffoli gates.

However, they have a minor issue: their Toffoli gates are not working 
and they are simply doing nothing (i.e. identity gates).

What is the fidelity of their “Toffoli” gate?


What if they replace all m-controlled-NOT gates with the identity?



Exercise
Fidelity of Toffoli w.r.t. Identity

Toffoli: ; ; T =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

Tr(T) = 6 F =
8 + 62

8 + 82
=

44
72

≈ 61 %


