Problem set 1 for 41076: Methods in Quantum Computing

due August 29th, at 3 pm
15 regular +3 bonus points

1 Linear algebra refresher (4 points)

1. Define the rotation matrix $R_{Z}(\alpha)=\left(\begin{array}{cc}e^{i \alpha / 2} & 0 \\ 0 & e^{-i \alpha / 2}\end{array}\right)$. Show that $X R_{Z}(\alpha) X=R_{Z}(-\alpha)$.
2. Consider a Hermitian matrix H. Show that a matrix $U=e^{i H}$ will be unitary.

2 Quantum circuits (5 points)

1. Prove the circuit identity in Fig. 1.

Figure 1: These quantum circuits are equivalent.
2. Suppose we implemented the circuit in Fig. 2 and measured the first register. If we measure the first qubit to be in a state $|0\rangle$, what is the state of the second register?

Figure 2: What is the state of the second register if the state of the first register was measured to be $|0\rangle$?

3 Working with pure and mixed states (6 points)

Alice and Bob share the state $|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}\right)$.

1. Verify that $|\langle\psi|| \psi\rangle \mid=1$
2. Compute the density operator $\sigma=|\psi\rangle\langle\psi|$. You can keep it in the bra-ket formalism or write it as a matrix.
3. Compute the purity $\operatorname{Tr}\left(\sigma^{2}\right)$. Is σ pure?
4. Compute the density operator of Alice's state $\sigma_{A}=\operatorname{Tr}_{B}(\sigma)$.
5. Compute the purity of Alice's state. Is Alice's state pure?
6. Is $|\psi\rangle$ an entangled state and why/why not?

4 Bonus (3 points)

Devise a quantum circuit that implements $|a\rangle|b\rangle|000\rangle \rightarrow|a\rangle|b\rangle|a+b\rangle$ where a, b are 2-bit binary numbers, i.e. $a, b \in\{00,01,10,11\}$.

