Methods in quantum computing

Mária Kieferová

August 8, 2023

University of Technology Sydney

- UTS undergraduates + SQA grads (different background)
- 12 weeks, 3-hour interactive lecture per week
- 50% required to pass, attendance not required (but recommended)
- office hours immediately after class or by appointment

- Canvas
- most up to date:

www.mariakieferova.com/methods-in-quantum-computing

- 3 problem sets, each contributing 15% to the final grade
- group video project
- final presentation + report
- opportunities to earn bonus points through the term

Warning

- The content of this class is difficult (for an undergraduate class)
- We assume familiarity with quantum formalism (Introduction to quantum computing), Linear algebra as well as mathematical maturity

BUT:

- This is a small class, ask for help when needed!
- Take advantage of bonus problems.
- Gen in touch with me before the deadlines.

Optional "Background refresher, a.k.a Problem Set 0 (5/0):

- these problems should be quite easy for you if they are not, they indicate what material you need to refresh
- due in/before the class in 2 weeks (August 22).
- solution will be released afterwards and any bonus points will be added to Problem Set 1

- Individual assignment submit your own work and explain your thinking
- Cite any used sources
- Programming (Python, Java, C, Matlab...) can help with some problems but it's not necessary. Submit your code if you're using it!

Group video:

- you'll be assigned partners and prepare a short video on one of the shortlisted topics
- a second part of the assignment is to assess 2 other videos

Final project:

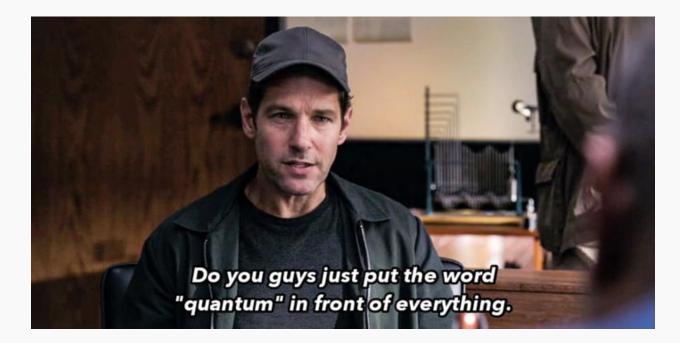
- read at least a part of a scientific paper and present the gist of it at the last class
- prepare a report explaining the result

You (and I) are expected to follow UTS code of conduct - similar to CoC at other universities

- treat others with respect, create a safe learning environment
- no bullying or harassment
- no cheating, academic fraud or plagiarism

Topic overview

- 1. Quantum formalism, quantum mechanics and quantum information theory
- 2. Quantum stack a bit of physics, architecture and quantum error correction
- 3. Quantum algorithm and complexity
- 4. Quantum communication and entanglement

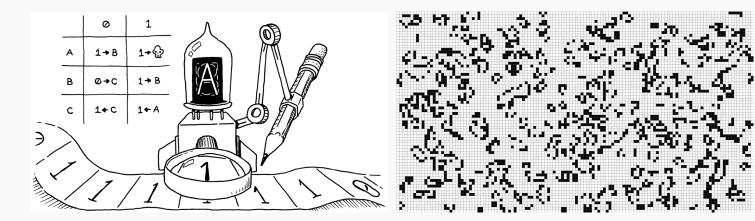


© marketoonist.com

Introduce yourself to the class! Where are you from? What would you do if you were given 2 months off from your studies?

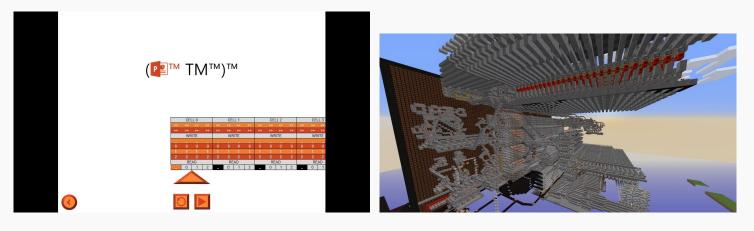
- 1. Motivation behind quantum computing
- 2. Models of computation
- 3. Quantum circuits

Computational models



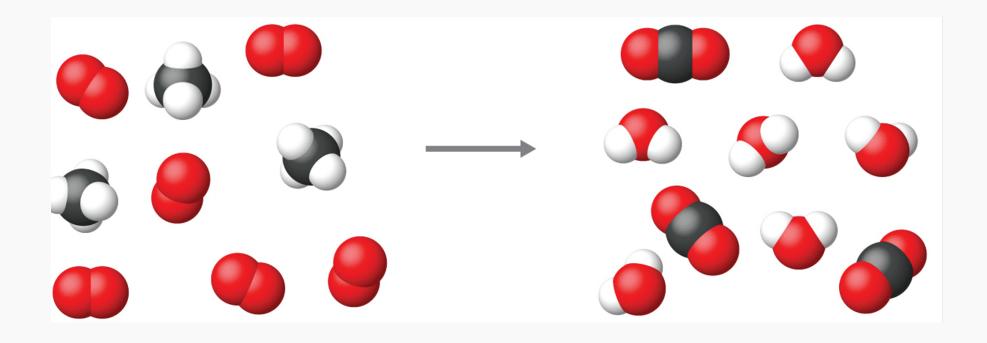
(a) Turing machine

(b) Conway's game of life



(c) Power Point

(d) Minecraft

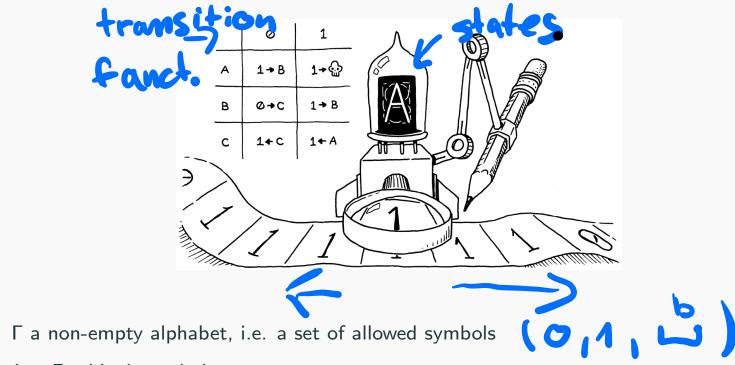


Physics of Computation

Why are you interested in quantum computing?

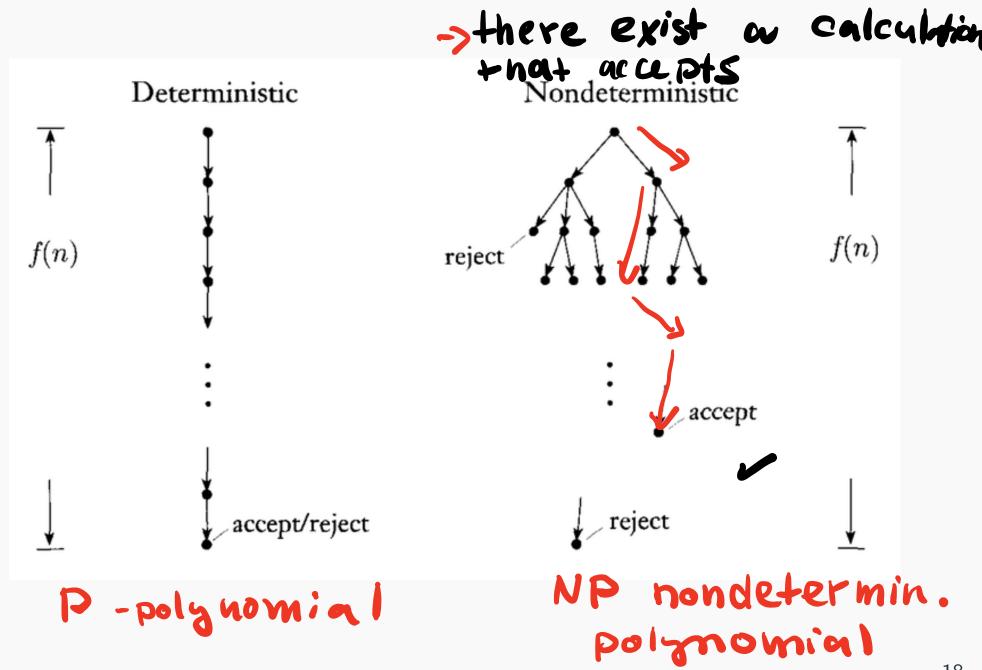
What topics are you working on and why did you choose them?

Turing machine

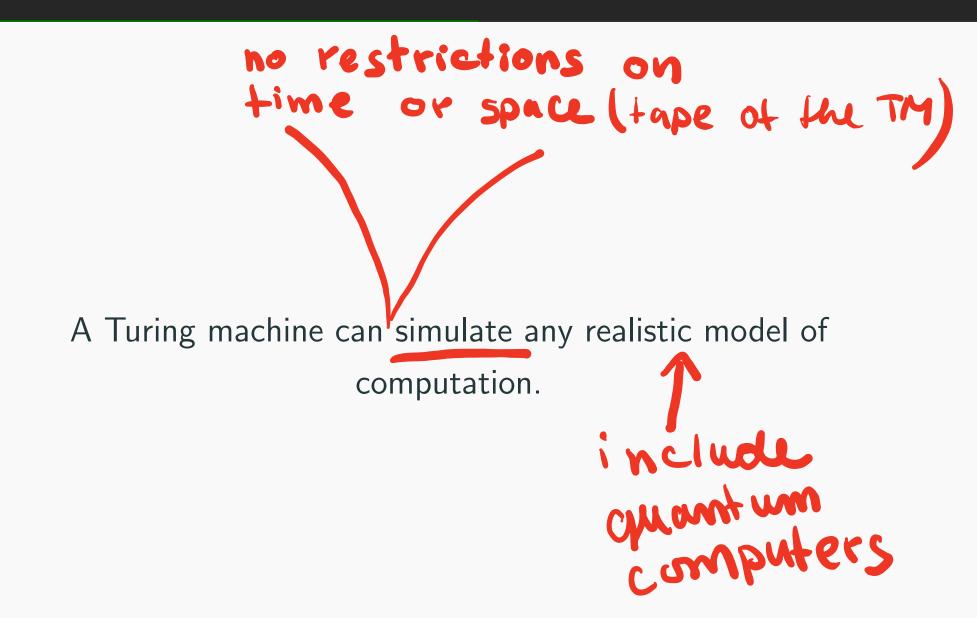


- $b \in \Gamma$ a blank symbol
- $\Sigma \subseteq \Gamma$ a set of symbols that initially appear on the tape
- Q a finite set of states of the machine
- $q_0 \in Q$ the initial state
- F ⊆ Q set of accepting states. If the TM reaches one of these states, the computation finishes and the input is accepted ("yes").
- $\delta: Q \setminus F \times \Gamma \rightarrow Q \times \Gamma \times \{\text{left, right}\}\ \text{is the transition function}.$

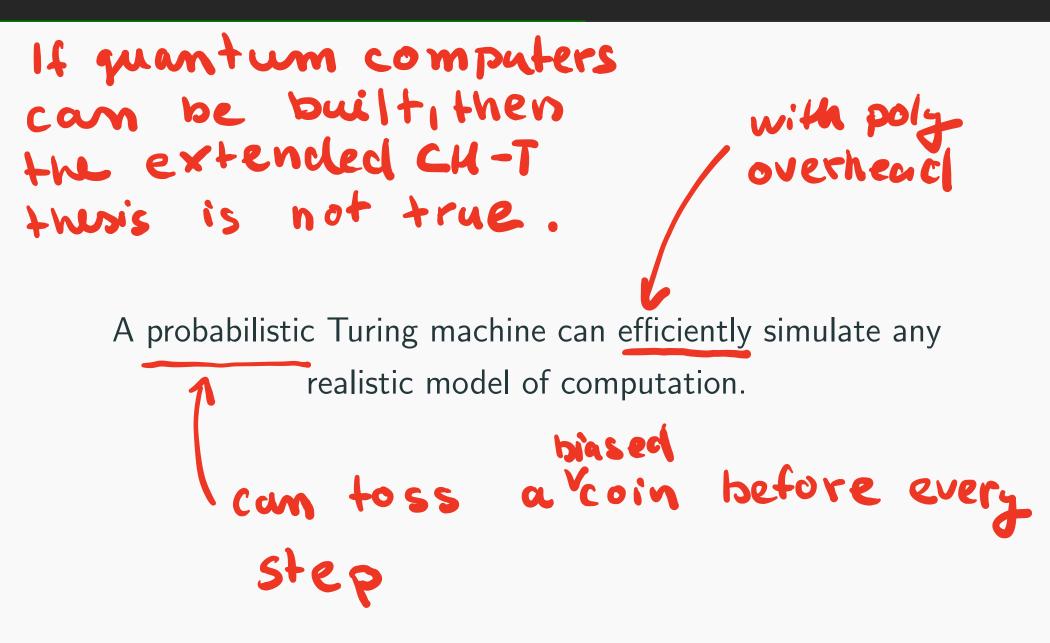
Turing machines



Church-Turing thesis



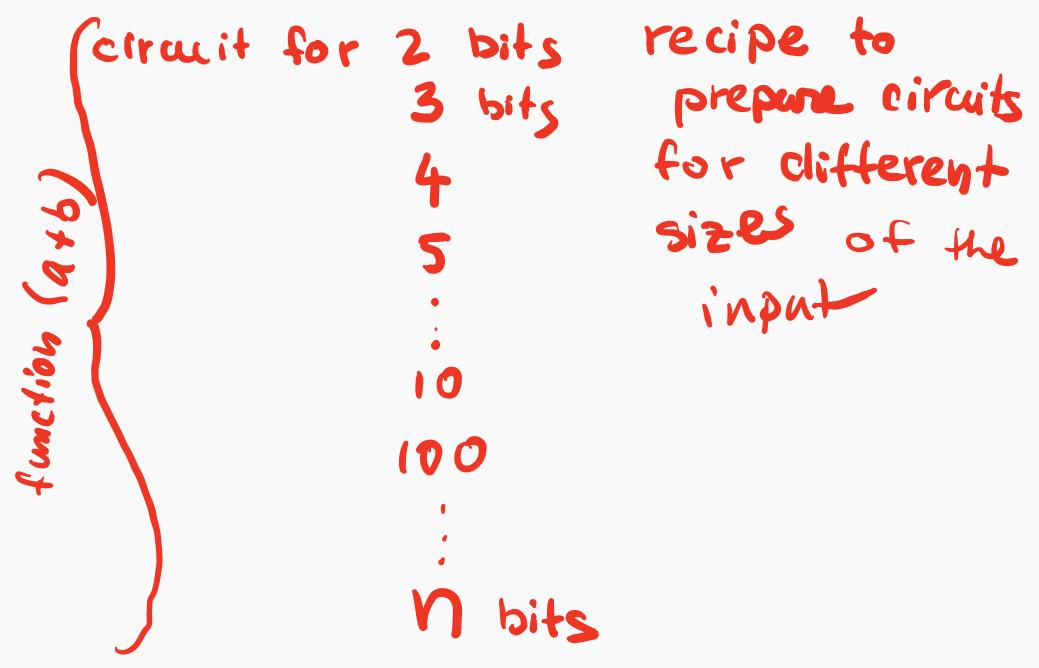
Extended Church–Turing thesis



Denote $\mathbb{B}^n := \mathbb{Z}_2^n$. Let $f : \mathbb{B}^n \to \mathbb{B}^m$ be a Boolean function that takes an 010...0 *n*-bit string as input and outputs an *m*-bit string. Let \mathcal{G} be a collection of basic logic gates. A Boolean circuit for f is a sequence of gates $\{g_1, \cdots, g_L\} \in \mathcal{G}$ which converts an input $\mathbf{x} \in \mathbb{B}^n$ to the output $\mathbf{y} \in \mathbb{B}^m$ with a fixed size of K auxiliary bits. compute the answer

Logical gates

Uniform circuit families



Show that the NAND and FANOUT (copy) are universal for

computation, i.e. they can be used to express all possible truth tables.

- (a) Show that the NOT gate can be simulated using a single NAND gate.
- (b) Show that the AND gate can be simulated with a constant number of NAND gates.
- (c) Show that the OR gate can be simulated with a constant number of NAND gates. Hint: in the footnote ¹. How many NANDs is required for this construction?

You might use additional bits initialized to 0 or 1. 1 Use De Morgan's Law: A OR B = NOT (NOT A AND NOT B).

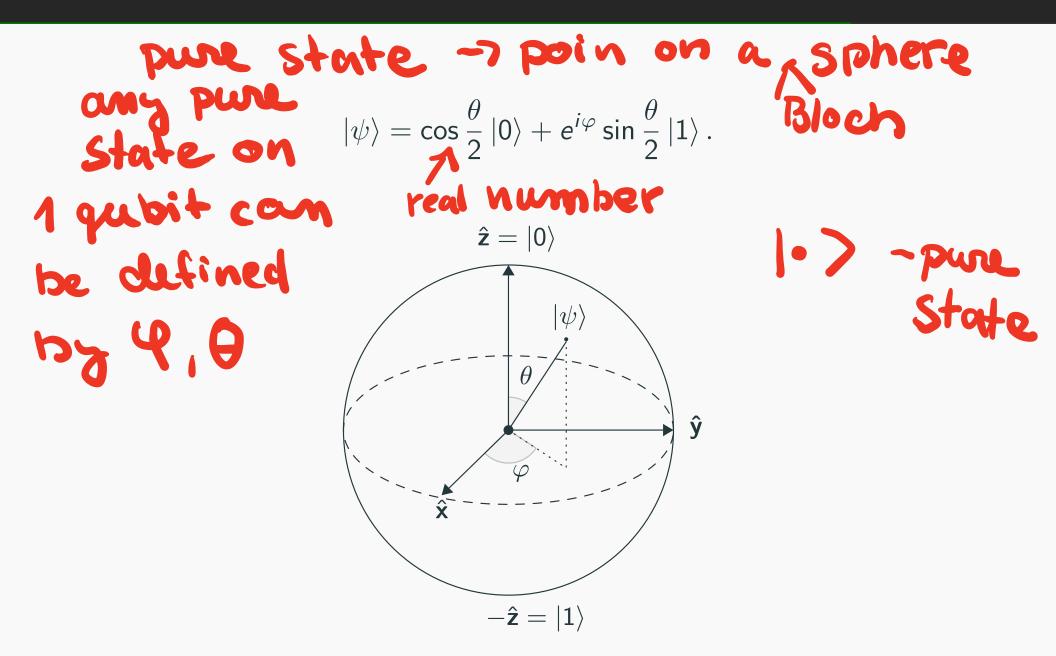
Logical circuits that can be inverted are known as reversible circuits.

 $h \rightarrow f(a)$

given (a Ab) what was a ? We can compute a from fla) What operations in Table 1 are reversible? What are the inverse operations to the reversible gates in Tables 1 and 2?

1 qubit Qubits <1> braket -inner product ket -number 41 bra Dirac notation $0_L \rightarrow 0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $1_{L} \rightarrow |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$ (0) = (10) (1) = (0) quantum computer where $|\alpha|^2 + |\beta|^2 = 1$ normalization

Qubits



an operation

Given an initial state $|\psi_0\rangle$, we can apply a gate U to obtain a new state $|\psi_1\rangle$

$$|\psi_1\rangle = U |\psi_0\rangle.$$

Show that quantum operations must be unitary in order to preserve the

norm of quantum states. An operation U is unitary if and only it satisfies $U^{-1} = U^{\dagger}$.

Exercise

- a Show that for a unitary matrix U, |det(U)| = 1. Hint: in a footnote.
- b A global phase of a quantum state is not detectable. In other words, states $|\psi\rangle$ and $e^{i\psi} |\psi\rangle$ represent the same physical state. What consequence will it have for single qubit gates?
- c Write the most general single qubit gate U using the convention det(U) = 1.

Exercise

What is the state state prepared by this circuit? 12+132+121+151=1 2100> +B101> Η 147 1007=107107= + 2110> =10>@10> $HIO7 = \frac{1}{10}(107 + 117) = 1+7 + 5 | 1 1 7 = 147$ $H(1) = \frac{1}{100}(100 - 100) = 1 -)$ 107107 H3 1 (1007 + 1107) CNOT 1 (1007 + 1117)

Solovay-Kitaev

Given some unitary U, how would we implement it? [4+Toff] + ancillas initialized to 0 or 1 [4, CNOT, T]

Given any universal set of gates \mathcal{G} that is closed under inverse, any unitary operation $U \in SU(d)$ can be ε -approximated using $O(\log^c(\frac{1}{\varepsilon}))$ gates from \mathcal{G} for some constant c.

Scaling in error only

2. Show that HZH = X and HXH = Z. a) show that the circuits output the same for all basis states bjurite gates as matrices, multiply them $C_1 \cup [\gamma] = [\phi] \cup = [\phi] \langle \gamma | + [\phi] \langle \gamma |]$ |OXO|@1+|VX1|@5=C510X01@(10X01+11X11)+11X11@(10X01-11X11)= $2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 1 = (2)

35

= _

Exercise

1. Show that _____

-Z

= 100×00 (+ 101×01 + 10×10) - 11×11

- -27 = 100001 + 201011
 - $= (10 \times 01 + 11 \times 11) | 0 \times 01 + 10 \times 01 11 \times 1)$
 - $= 100 \times 00 + 10 \times 101 + 100 \times 001 101 \times 101$

LUS = RHS

THE END