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Class overview

e UTS undergraduates + SQA grads (different background)
e 12 weeks, 3-hour interactive lecture per week
e 50% required to pass, attendance not required (but recommended)

e office hours immediately after class or by appointment



Information about the course

e Canvas

e most up to date:

www.mariakieferova.com/methods-in-quantum-computing


(null)://(null)www.mariakieferova.com/methods-in-quantum-computing

Assessment

e 3 problem sets, each contributing 15% to the final grade
e group video project
e final presentation + report

e opportunities to earn bonus points through the term



e The content of this class is difficult (for an undergraduate class)

e \We assume familiarity with quantum formalism (Introduction to
quantum computing), Linear algebra as well as mathematical

maturity
BUT:

e This is a small class, ask for help when needed!
e Take advantage of bonus problems.

e Gen in touch with me before the deadlines.



Help! | don’'t remember quantum circuits anymore!

Optional " Background refresher, a.k.a Problem Set 0 (5/0):

e these problems should be quite easy for you - if they are not, they

indicate what material you need to refresh

e due in/before the class in 2 weeks (August 22). UCM*&

e solution will be released afterwards and any bonus points will be

added to Problem Set 1



Problem set

e Individual assignment - submit your own work and explain your

thinking
e Cite any used sources

e Programming (Python, Java, C, Matlab...) can help with some

problems but it's not necessary. Submit your code if you're using it!



Other assignments

Group video:

e you'll be assigned partners and prepare a short video on one of the

shortlisted topics

e a second part of the assignment is to assess 2 other videos
Final project:

e read at least a part of a scientific paper and present the gist of it at

the last class

e prepare a report explaining the result



Code of conduct

You (and |) are expected to follow UTS code of conduct - similar to CoC

at other universities

e treat others with respect, create a safe learning environment
e no bullying or harassment

e no cheating, academic fraud or plagiarism



Topic overview

1. Quantum formalism, quantum mechanics and quantum information
theory

2. Quantum stack - a bit of physics, architecture and quantum error
correction

3. Quantum algorithm and complexity

4. Quantum communication and entanglement

I

Do you guys just l}:ut the vg?rd'
“quantum® in front of everything.




SHOULD WE SCHEPULE
QUR NEXT ZOOM
MEETING OR JUST RIT

-~ OURSELVES RECEATEDLY
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Introduce yourself to the class! Where are you from? What would you do

if you were given 2 months off from your studies?
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1. Motivation behind quantum computing
2. Models of computation

3. Quantum circuits
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Computational models

(@) Turing machine (b) Conway’s game of life

(@TM TMTM)TM
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(c) Power Point (d) Minecraft
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Physics of Computation




Why are you interested in quantum computing?

What topics are you working on and why did you choose them?

16



Turing machine

/ PPN N
>
e [ a non-empty alphabet, i.e. a§e::f allowed symbols ‘o ‘4 ‘ L\:,
e b & [ ablank symbol
e > C [ aset of symbols that initially appear on the tape
e (@ a finite set of states of the machine
-

® go € Q the initial state

o [ C Q set of accepting states. If the TM reaches one of these states, the computation

finishes and the input is accepted ("yes").

0: Q\F XTI — Q xT x {left, right} is the transition function.
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Turing machines
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Church-Turing thesis

no restrictions ou
+iwme ov spale que ot H'.LT'“Q

A Turing machine can’simulate any realistic model of

computation.
m‘\\' V|
Ofmv“*e"b
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Extended Church—Turing thesis

1{ smamtum compalers
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A probabilistic Turing machine can efficiently simulate any

“realistic model of computation.
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Logical circuits

Denote B" :=Z5. Let f : B" — B™ be a Boolean function that takes an
Ol0...00 1040
n-bit string as input and outputs an m-bit string. Let G be a collection of

basic logic gates. A Boolean circuit for f is a sequence of gates

{g1, -+ ,gL} € G which converts an input x € B" to the output y € B™

with a fixed size of K auxiliary bits.

?::e_-j> tinit@

— compatL
e omnswey
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Logical gates

Yable n Uw leckwa m-,-%
NWD = HVD < NOT
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A - - NOT

AND
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Uniform circuit families
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Exercise

meeb o 5:05

Show that the NAND and FANOUT (copy) are universal for

computation, i.e. they can be used to express all possible truth tables.

(a) Show that the NOT gate can be simulated using a single NAND
[+ § |
gate. 1$ a

(b) Show that the AND gate can be simulated with a constant number
of NAND gates.

(c) Show that the OR gate can be simulated with a constant number of
NAND gates. Hint: in the footnote !. How many NAND:s is

required for this construction?

You might use additional bits initialized to 0 or 1.
1Use De Morgan's Law: A OR B = NOT ( NOT A AND NOT B).
T ——
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Reversible circuits

Logical circuits that can be inverted are known as reversible circuits.
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Exercise

What operations in Table 1 are reversible? What are the inverse

operations to the reversible gates in Tables 1 and 27
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Quantum operations

an OperioO Wy
~—

Given an initial state |1)g), we can apply a gate U to obtain a new state

1)
1) = Ulabo) -

D =U7_N'45 = U‘LU'I V>
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Exercise

A4 qubit s ehdu%

Show that quantum operations must be unitary in order to preserve the

norm of quantum states. An operation U is unitary if and only it satisfies

U-1=urt.
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Exercise

det(U)| = 1. Hint: in a footnote.

a Show that for a unitary matrix U,

b A global phase of a quantum state is not detectable. In other words,
states |)) and e'¥ |+)) represent the same physical state. What

consequence will it have for single qubit gates?

c Write the most general single qubit gate U using the convention

det(U) = 1.
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Exercise

What is the state state prepared by this circuit?

Lloo> lhltHstdpridiz
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Solovay-Kitaev

Given some u/mtemta U, how would
we \ M |Qm¢V\"’5 .

+ Mu‘“a& 3m‘-"c'0l‘0'}¢d 0 Oor/]

Given any universal set of gates G that is closed under inverse, any
i —
unitary operation U € SU(d) can be e-approximated using O(log®(%))
gates from G for some constant c. 7‘
SCy la'ua,
Oh‘}
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Exercise

@Show that T _ e
; l

2. Show that HZH = X and HXH = Z.

o) Show Mk ML cicwids outpul- R Sdine
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HOIWY =107 V=PV + [@Xevl
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loXo | @A + INMeE =C2
\oX0|® (IoX01+1AX11) +11X4 |@ (10X01=14X1])=

1=(37)  2=(8-) )
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