Methods in quantum computing

Mária Kieferová
August 22, 2023

University of Technology Sydney

Announcements

- Please email me your solutions to the bonus problems if you'd like to.
- Feel free to reserve a topic for the final presentation/report. Let me know if you're interested in a different topic or if the one you'd like is already taken.

Today

- measurements
- norm and distance
- noise channels

Quantum measurement

Obtain classical information from a quantum state. It can destroy the superposition property of a quantum state. $|b\rangle=\alpha|0\rangle+\beta|1\rangle$

Observe this qubit in state $|0\rangle$ with probability $|\alpha|^{2}$ and in state $|1\rangle$ with probability $|\beta|^{2}$. Furthermore, after the measurement, the qubit state $|b\rangle$ will disappear and collapse to the observed state $|0\rangle$ or $|1\rangle$.

DANGER: MULTIVERSE

General quantum measurement

A collection of $\Upsilon:=\left\{M_{i}\right\}$, where each measurement operator $M_{i} \in \mathcal{L}(\mathcal{H})$ satisfies \rightarrow probabilities
always get ore Po sitive
ambles $M_{i}=1$ an outcome
and each M_{i} is positive semi-definite operator. We call this measurements positive operator-valued measure (POVM). The probability of obtaining an outcome i on a quantum state ρ is probabilities

$$
p_{i}:=\operatorname{Tr}\left(M_{i} \rho\right) .
$$ Born's rule

The state after measurement will be altered as
(3)

$$
\rho_{i}:=\frac{M_{i} \rho}{p_{i}}
$$

$0 \rightarrow$

Example

$$
\begin{array}{ll}
M_{0}=10 \times 0 \mid & \left.M_{0}=\frac{1}{2} 10 \times 0 \right\rvert\, \\
M_{1}=1|-(10 \times 01)=|1 \times 1| & M_{1}=\frac{1}{2}|1 \times 1| \\
M_{0}+M_{1}=11 & M_{0}=100 \times 00 \mid \\
M_{1}=11-100 \times 001 & M_{2}=\frac{1}{2} 11
\end{array}
$$

M_{0}, M_{1} are projectors \Rightarrow eigenvalues are 0 and 1. $\Rightarrow M_{0}, M_{1}$ are positive semi-detinite

$$
\begin{aligned}
& M_{0}|0\rangle=1|1\rangle \\
& \left.M_{0} \mid 1\right)=0|0\rangle=0 \\
& |b\rangle=d|0\rangle+\beta|1\rangle \\
& P_{0}=\operatorname{Tr}(|6 \times b| 0 \times 0 \mid)=\operatorname{Tr}(\|\langle b \mid 0\rangle\| \|)=|B|^{2} \\
& \left.S=\frac{M_{0}|B \times B|}{P_{0}}=10 \times 0 \right\rvert\,
\end{aligned}
$$

Projective measurement

Each M_{i} is a projector

$$
p_{j}:=\operatorname{Tr}\left(P_{j}|\phi\rangle\langle\phi|\right)
$$

as the example before

and the resulting state

$$
\frac{P_{j}|\phi\rangle}{\sqrt{p_{j}}} .
$$

exercise

A single qubit is fully characterized by a vector $\vec{r},|r| \leq 1$ such that

$$
\begin{equation*}
\rho=\frac{1}{2}\left(1+r_{0} \sigma_{x}+r_{1} \sigma_{y}+r_{2} \sigma_{z}\right) \tag{3}
\end{equation*}
$$

Take a set of operators

$$
\begin{equation*}
M=\left\{\frac{I+X}{6}, \frac{I-X}{6}, \frac{I+Y}{6}, \frac{I-Y}{6},, \frac{I+Z}{6}, \frac{I-Z}{6}\right\} . \tag{4}
\end{equation*}
$$

Show that

1. M is a POVM (operators are positive and sum to identity).
2. M is tomographically complete i.e. measuring enough times will allow us to learn the vector r.

State discrimination

Take $|+\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}},|-\rangle=\frac{|0\rangle-|1\rangle}{\sqrt{2}}$ and measurement statistics for $M=\{|0\rangle\langle 0|,|1\rangle\langle 1|\}$. Given an unknowns state $|\psi\rangle$, is it $|+\rangle$ or $|-\rangle$?

State discrimination task: what M to choose to be able to decide which one of quantum states we are given with the highest probability.

$$
\begin{aligned}
& \langle\psi| z|\psi\rangle=0.7(+1)+0.3(-1) \\
& \mid 0 \times 01 \rightarrow 70 \% \\
& \mid 1 \times 11 \rightarrow 30 \%
\end{aligned}
$$

Norm of states and state distance

For pure states: Norm $\|\psi\|=\langle\psi \mid \psi\rangle$
How to extend the concept of the norm to matrices? How to calculate distance between quantum channels and operators?

Every norm $\|\cdot\|$ must satisfy the following conditions.

- $\|A\| \geq 0$ with equality if and only if $A=0$.
- $\|\alpha A\|=|\alpha|\|A\|$ for any $\alpha \in \mathbb{C}$.
- Triangle inequality: $\|A+B\| \leq\|A\|+\|B\|$.

Examples: $\sqrt{a^{2}+b^{2}}$ Eucliclian on \mathbb{R}^{2} $\|\alpha\|^{2}+\|B\|^{2}$ $|\alpha|+|\beta|$

Matrix Schatten norms

Shatten p-norm of a matrix $A \in \mathbb{C}^{m \times n}$ is defined as

$$
\begin{equation*}
\|A\|_{p}:=\left(\operatorname{Tr}\left(|A|^{p}\right)^{\frac{1}{p}}\right. \tag{5}
\end{equation*}
$$

where $|A|:=\sqrt{A^{\dagger} A}$. We extend $p \rightarrow \infty$ as follows

$$
\begin{equation*}
\|A\|_{\infty}:=\max \left\{\|A \boldsymbol{x}\|: \forall \boldsymbol{x} \in \mathbb{C}^{n},\|\boldsymbol{x}\|=1\right\} \tag{6}
\end{equation*}
$$

$p=1,2, \infty$

Exercise

of eigenvalue

Denote by $\sigma_{i}(A)$ the i-th (non-zero) singular value of A. Show that

$$
\begin{equation*}
\|A\|_{p}=\left(\sum_{i}\left(\sigma_{i}(A)\right)^{p}\right)^{\frac{1}{p}} \tag{7}
\end{equation*}
$$

$A=\sum_{i} \sigma_{i}\left|i x_{i}\right|$

$A^{p}=\Sigma_{i} r_{i}^{p}\left|i x_{i}\right|$

Matrix Schatten norm, $\mathrm{p}=1$

This is known as the trace norm.

Schatten norm, $p=2$

$$
\begin{equation*}
\|A\|_{\boldsymbol{p}=\mathbf{2}}:=\operatorname{Tr}\left(|A|^{2}\right)^{\frac{1}{2}}=\left(\sum_{i}\left(\sigma_{i}(A)\right)^{2}\right)^{\frac{1}{2}} \tag{9}
\end{equation*}
$$

This is known as the Hilbert-Schmidt norm or Frobenius norm. It can be also defined as

$$
\begin{equation*}
\|A\|_{2} \equiv\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|A_{i, j}\right|^{2}} . \tag{10}
\end{equation*}
$$

Notice that it corresponds to the norm of the vector of singular values.
$A=\sum_{i} \sigma_{i} 19 X_{i l}$ (in the basis of its eigenvectors)
$\vec{\sigma}=\left(\sigma_{0}, \sigma_{1}, \ldots \sigma_{n}\right) \begin{aligned} & \text { vector of eignunulues } \\ & \|\sigma\|^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\ldots+\sigma_{n}^{2}\end{aligned}$

$$
\begin{equation*}
\|A\|_{\infty}:=\max \left\{\|A x\|: \forall x \in \mathbb{C}^{n},\|x\|=1\right\} \tag{11}
\end{equation*}
$$

This is called the operator norm and corresponds to the largest singular value.

$$
\|v\|=1
$$

$$
A=\sum \lambda_{i} l_{i} x_{i} \mid
$$

$$
\max _{v}\|A v\|=\max _{v}\left\|\sum_{i} x_{i}\left|i x_{i}\right| v\right\|
$$

v ck to be the eigenvector with the largest eigenvalue

$$
\|A v\|=x_{\max }
$$

Properties

1. unitarily invariant: for any unitary operators U and V

$$
\begin{equation*}
\|U A V\|_{p}=\|A\|_{p} \tag{12}
\end{equation*}
$$

for any $p \in[1, \infty]$.
2. Hölder's inequality: for $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times \ell}$, it holds that

$$
\begin{equation*}
\|A B\|_{1} \leq\|A\|_{p}\|B\|_{q} \tag{13}
\end{equation*}
$$

where $p, q \geq 1$ and $\frac{1}{p}+\frac{1}{q}=1$.
3. Sub-multiplicativity: for $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times \ell}$, it holds that

$$
\begin{equation*}
\|A B\|_{p} \leq\|A\|_{p}\|B\|_{p} \tag{14}
\end{equation*}
$$

4. Monotonicity: for $1 \leq p \leq q \leq \infty$, it holds that

$$
\begin{equation*}
\|A\|_{1} \geq\|A\|_{p} \geq\|A\|_{q} \geq\|A\|_{\infty} \tag{15}
\end{equation*}
$$

There are other norms, including induced norms, entry-wise norms, etc often with conflicting notation.

Wikipedia article "Matrix norm" can be very helpful.
NA ${ }_{2}$ $\|A\|_{\text {max }}=\max _{i, j}\left|A_{i, j}\right|$

Use a norm to define metric

- The distance between an object and itself is always zero.
- The distance between distinct objects is always non-negative.
- Distance is symmetric: the distance from x to y is always the same as the distance from y to x.
- Triangle inequality: $d(x, y) \leq d(x, z)+d(z, y)$

$$
\begin{aligned}
& d(a, a)=0 \\
& d(a, b)=0 \Leftrightarrow a=b \\
& \frac{d(a, b) \geq 0}{d \cdot C_{1}^{n \times m} \times c^{n+m} \rightarrow \mathbb{R}_{+, 0}}
\end{aligned}
$$

$$
\Gamma_{x}^{\top}
$$

Examples

Trace Distance

The trace distance between two operators A and B is given by

$$
T(A, B):=\frac{1}{2} \operatorname{Tr}(A-B) .=\frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B}\|_{\mathbf{1}}
$$

Related to the maximum probability of distinguishing between two quantum states.
$\frac{1}{2} \operatorname{Tr}(|\psi X \psi|-|\phi X \phi|)$

$$
p_{\text {success }}=\frac{1}{2}(1+T(A, B))
$$

Quantum analogue of total variational distance.

$$
\frac{1}{2} Z_{i} ;\left.K_{i}|\psi\rangle\right|^{2}-K_{i}|\varphi\rangle R^{2}
$$

$$
1-\sqrt{F(\rho, \sigma)} \leq T(\rho, \sigma) \leq \sqrt{1-F(\rho, \sigma)}
$$

Sometimes $\zeta+$ the syucore is missing
Not a distance, but infidelity ($1-F$) is
maximize fidelity \Leftrightarrow minimize distance from the target

$$
\begin{aligned}
& \rightarrow|F S=|\psi X \psi| \\
& F(S, \sigma)=\langle\psi| \sigma|\psi\rangle \\
& \text { Povm } \\
& M_{0}=|\psi X \psi| \\
& M_{1}=\mathbb{H}-|\psi X \psi|
\end{aligned}
$$

Exercise

1. $0 \leq F(\rho, \sigma) \leq 1$.
2. $F\left(U_{\rho} U^{\dagger}, U \sigma U^{\dagger}\right)=F(\rho, \sigma)$.
3. $F\left(\left|\psi_{\rho}\right\rangle,\left|\psi_{\sigma}\right\rangle\right)=\left|\left\langle\psi_{\rho} \mid \psi_{\sigma}\right\rangle\right|^{2}$.
4. Symmetry: $F(\rho, \sigma)=F(\sigma, \rho)$.
$\sqrt{\sigma}^{2}=\sum_{i} p_{i} l_{i} x_{i} \mid$ go to $\begin{gathered}\sigma \\ \text { of }\end{gathered}$

Exercise

What is the fidelity and total trace distance between a maximally mixed state and any pure state?

Quantum channels

last time:

$$
\begin{equation*}
\Phi(\sigma)=\sum_{i} B_{i} \sigma B_{i}^{\dagger} \quad \text { where } \quad \sum_{i} B_{i}^{\dagger} B_{i}=1 \tag{16}
\end{equation*}
$$

Examples of channels

- Depolarizing Channel:

$$
\mathcal{N}(\rho)=(1-p) \rho+p \pi,
$$

where π is the completely mixed state.

- Dephasing Channel:

$$
\mathcal{N}(\rho)=(1-p) \rho+p Z \rho Z .
$$

Average Fidelity of a quantum channel

Defined with respect to the identity channel

$$
\begin{equation*}
F(\mathcal{E})=\int d \psi\langle\psi| \mathcal{E}(\psi)|\psi\rangle \tag{17}
\end{equation*}
$$

as an average over all state fidelities. To obtain the average, we must integrate over all the quantum states in a given Hilbert space with equal weightings and satisfy $\int d \psi=1$. This is known as integration over Haar measure.

Exercise

Compute the fidelity of a qubit depolarizing channel $\mathcal{E}(\rho)=(1-p)|\psi\rangle\langle\psi|+p \frac{I}{d}$.

Unitary channel

The special case of fidelity between a unitary and the identity can be simplified through the Nielsen's equation:

$$
\begin{equation*}
F(U)=\frac{d+|\operatorname{Tr}(U)|^{2}}{d+d^{2}} \tag{18}
\end{equation*}
$$

Exercise

1. Verify that $F(I)=1$ in (18).
2. The hottest quantum startup promises to do quantum computing by implementing Hadamard and Toffoli gates. However, they have a minor issue: their Toffoli gates are not working and they are simply doing nothing (i.e. identity gates). What is the fidelity of their "Toffoli" gate?
3. What if they replace all m-controlled-NOT gates with the identity?
