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Announcements

• Problem set 1 is due

• I require your full solutions, not just the answers

• If you already submitted a solution but would like to expand on it,

correct something, please do so by the end of the day (otherwise a

late penalty will apply)

• Solved problem sets will appear on the website, also problem set 2

• Has everyone who submitted set 0 received an email from me?
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Fidelity and Trace distance

Fidelity IF (⇢,�) :=
�
Tr

pp
⇢�

p
⇢
�2

If at least one of the states is pure F = h |� | i.

Can be interpreted as measuring � with POVM M0 = | i h |,

M1 = I� | i h |.

Trace distance Tr(A,B) = 1
2 Tr |A� B | - tells us how easy it is to

distinguish between A and B, more di�cult to measure.
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Infidelity and trace distance on pure state

Infidelity: 1� |h |�i|2

Trace distance:
p

1� |h |�i|2
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Geometric representation
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Exercise

1. 0  F (⇢,�)  1.

2. F (U⇢U†,U�U†) = F (⇢,�).

3. F (| ⇢i, | �i) = |h ⇢| �i|2.

4. Symmetry: F (⇢,�) = F (�, ⇢).
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Exercise

What is the fidelity and total trace distance between a maximally mixed

state and any pure state?
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Quantum channels

previously:

�(�) =
X

i

Bi�B
†
i

where
X

i

B
†
i
Bi = 1. (1)
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Examples of channels

• Depolarizing Channel:

N (⇢) = (1� p)⇢+ p⇡,

where ⇡ is the completely mixed state.

• Dephasing Channel:

N (⇢) = (1� p)⇢+ pZ⇢Z .
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Average fidelity of a quantum channel

Defined with respect to the identity channel

F (E) =
Z

d h | E( ) | i (2)

as an average over all state fidelities. To obtain the average, we must

integrate over all the quantum states in a given Hilbert space with equal

weightings and satisfy
R
d = 1. This is known as integration over Haar

measure.
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Exercise

Compute the fidelity of a qubit depolarizing channel

E(⇢) = (1� p) | i h |+ p
I

d
.
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Unitary channel

The special case of fidelity between a unitary and the identity can be

simplified through the Nielsen’s equation:

F (U) =
d + |Tr(U)|2

d + d2
. (3)
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Exercise

1. Verify that F (I )=1 in (3).

2. The hottest quantum startup promises to do quantum computing by

implementing Hadamard and To↵oli gates. However, they have a

minor issue: their To↵oli gates are not working and they are simply

doing nothing (i.e. identity gates). What is the fidelity of their

“To↵oli” gate?

3. What if they replace all m-controlled-NOT gates with the identity?
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Equations of motion
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Schrödinger equation

i~ d

dt
| (t)i = H | (t)i (4)

H can depend on time (but won’t in this class).

take ~ = 1
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Hamiltonian and energies

H |�j(t)i = Ej |�j(t)i . (5)
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Exercise

Let us take our H = 2Z . What are the energies are their corresponding

eigenstates? Which one is the ground state energy? Verify that for each

eigenstate, multiplying it by e
�i↵ for a real ↵ will also yield an eigenstate

with the same eigenvalue.
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Di↵erential equations

d

dt
f (t) = af (t) (6)
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Formal solution

| (t)i = e
�iHt | (0)i (7)
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Evolution of eigenstates

When | (0)i = |�ji

i
d

dt
| (t)i = H | (t)i = E | (t)i . (8)
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General state

Ansatz | (t)i =
P

j
aj(t) |�ji

X

j

d

dt
aj(t) |�ji = �i

X

j

aj(t)H |�ji
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Initial condition

| (0)i = |�ji
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Recipe for computing the evolution and problems with it

1. Find the entries and eigenstates of the Hamiltonian. Make sure to

normalize the eigenstates.

2. Compute the overlaps between the initial state and the eigenstates.

We you do this correctly, the overlaps should be normalized.

3. Substitute the energies Ek , eigenstates |�ki and overlaps h�k | (0)i

to | (t)i =
P

k
h�k | (0)ie�iEk t |�ki. Sometimes the solution can be

further simplified.
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Expectation value and energy eigenstates

hE i = h |H | i . (9)
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General expectation value and observables

hE i = h |H | i . (10)
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Exercise

Take a Hamiltonian

H =

0

@3 2

2 �3

1

A (11)

And an initial state

| (0)i =

0

@1

0

1

A (12)

Find the evolution of the state | (t)i under H. What will be its expected

energy?
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