Methods in quantum computing

Mária Kieferová
August 29, 2023

University of Technology Sydney

Announcements
amplitude| ${ }^{2}$

- Problem set 1 is due $a a^{*}=p$
- I require your full solutions, not just the answers
- If you already submitted a solution but would like to expand on it, correct something, please do so by the end of the day (otherwise a late penalty will apply)
- Solved problem sets will appear on the website, also problem set 2
- Has everyone who submitted set 0 received an email from me?
positive semiclefinite matrix
\Leftrightarrow all eigenvalues are larger or equal to $0, x \rightarrow x= \pm 1 \rightarrow$ NOT

Fidelity and Trace distance

Fidelity $F(\rho, \sigma):=(\operatorname{Tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}})^{2}$ not used
If at least one of the states is pure $F=\langle\psi| \sigma|\psi\rangle$.
Can be interpreted as measuring σ with POVM $M_{0}=|\psi\rangle\langle\psi|$, $M_{1}=\mathbb{I}-|\psi\rangle\langle\psi|$.

Trace distance $\operatorname{Tr}(A, B)=\frac{1}{2} \operatorname{Tr} \underbrace{|A-B|}$; tells us how easy it is to distinguish between A and B, more difficult to measure.

Infidelity and trace distance on pure state
Infidelity: $1-|\langle\psi \mid \phi\rangle|^{2} \quad 1$-fidelity
Trace distance: $\sqrt{1-|\langle\phi \mid \phi\rangle|^{2}}$
mixed state tr-distance it's

$$
\text { not } \sqrt{1-2 * i v|\psi\rangle}
$$

Geometric representation

tr distance is 1 \Rightarrow perfectly distinguish with 1 meas wrement

Exercise

1. $0 \leq F(\rho, \sigma) \leq 1$.
2. $F\left(U_{\rho} U^{\dagger}, U_{\sigma} U^{\dagger}\right)=F(\rho, \sigma)$.
3. $F\left(\left|\psi_{\rho}\right\rangle,\left|\psi_{\sigma}\right\rangle\right)=\left|\left\langle\psi_{\rho} \mid \psi_{\sigma}\right\rangle\right|^{2}$.
4. Symmetry: $F(\rho, \sigma)=F(\sigma, \rho)$.

Exercise

What is the fidelity and total trace distance between a maximally mixed state and any pure state?

Quantum channels
previously:
Rrales openators

$$
\begin{equation*}
\Phi(\sigma)=\sum_{i} B_{i} \sigma B_{i}^{\dagger} \quad \text { where } \quad \sum_{i} B_{i}^{\dagger} B_{i}=\mathbf{1} \tag{1}
\end{equation*}
$$

Examples of channels

- Depolarizing Channel:

$$
\begin{aligned}
& \text { phrob. } p \text { of } \\
& \text { error } x, y \text { or } \\
& \mathcal{N}(\rho)=(1-p) \rho+p \pi, \quad Z
\end{aligned}
$$

where π is the completely mixed state.

- Dephasing Channel:

Average fidelity of a quantum channel

Defined with respect to the identity channel without noise

$$
\begin{equation*}
F(\mathcal{E})=\int d \psi \underbrace{\underline{\underline{L}}(\psi)|\psi\rangle}_{\mathbf{w} \text { itch noise } \boldsymbol{e}} \tag{2}
\end{equation*}
$$

as an average over all state fidelities. To obtain the average, we must integrate over all the quantum states in a given Hilbert space with equal weightings and satisfy $\int d \psi=1$. This is known as integration over Haar measure.

Compute the fidelity of a quit depolarizing channel

$$
\mathcal{E}(\rho)=(1-p)|\psi\rangle\langle\psi|+p \frac{1}{d} .
$$

d-dimensions

\rightarrow in practice evaluate through sampling
\rightarrow from what?
set of state that approximate runclom quantum states (t-design)
\rightarrow RANDOMIZED BENCHMARKKGG

Unitary channel

The special case of fidelity between a unitary and the identity can be simplified through the Nielsen's equation:

$$
\begin{equation*}
F(U)=\frac{d+|\operatorname{Tr}(U)|^{2}}{d+d^{2}} \tag{3}
\end{equation*}
$$

Exercise

1. Verify that $F(I)=1$ in (3).
2. The hottest quantum startup promises to do quantum computing by implementing Hadamard and Toffoli gates. However, they have a minor issue: their Toffoli gates are not working and they are simply doing nothing (i.e. identity gates). What is the fidelity of their "Toffoli" gate?

3. What if they replace all m-controlled-NOT gates with the identity?

Equations of motion
What will be the system in time

Schrödinger equation
line or!
H can depend on time (but wont in the crass)
take $\hbar=1$

H-describes the energy of a closed system

- hermitian matrix

Hamiltonian and energies
time-independent schrödinger equation $C_{\left.E_{i} \phi_{i}(t)\right)}$ er y $=$ eigenvalue scalar matrix $\mathcal{C}_{\text {eigenstates }}$ of H
$\left\{E_{j}\right\}$-spectrum of the Hamiltonian
E_{0}-lowest energy, $\left|\Phi_{0}\right\rangle$-ground state - ground state energy
E_{1}, E_{2} - 1stinnd... excited states

$$
A \vec{v}=\lambda \vec{v}
$$

then $\quad A(a \vec{v})=\lambda a \vec{v}$

Exercise

Let us take our $H=2 Z$. What are the energies are their corresponding eigenstates? Which one is the ground state energy? Verify that for each eigenstate, multiplying it by $e^{-i \alpha}$ for a real α will also yield an eigenstate with the same eigenvalue.
$2\binom{1}{0} \rightarrow$ not an eigenstat (not normalized $e^{-i \alpha}|v\rangle$

Differential equations

$$
\begin{aligned}
& f(0)=f_{0} \\
& \frac{d}{d t} f(t)=\underbrace{\text { anf(t) }}_{\text {function }} \underbrace{\text { ner }}_{i f} \\
& \int \frac{d f(t)}{f(t)}=\int a d t \\
& \ln f=a t+C^{\prime} \\
& f(t)=e^{a t+c}=e^{a t} \underbrace{e^{c^{\prime}}}_{c}=c c^{a t} \\
& f(0)=f_{0}=C e^{0}=C \\
& f(t)=f_{0} e^{d t}
\end{aligned}
$$

Formal solution
$|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle$
$e^{A}=\sum_{k} \frac{A^{k}}{k!}$ Simulating Hamiltonian evolution is a harl problem for classical computers (BQP complete)

$$
\begin{align*}
& \text { When }|\psi(0)\rangle=\left|\phi_{j}\right\rangle \text { eigenstate of } \boldsymbol{U} \text { with } \\
& \text { energy } E_{j} \\
& \text { i } \left.\frac{d}{d t}\left|\phi_{j}(t)=i \frac{d}{d t}\right| \psi(t)\right\rangle=H|\psi(t)\rangle=E_{j}\left|\phi_{j}\right\rangle \tag{8}\\
& \frac{d}{d t}\left|\phi_{j}(t)\right\rangle=-i E_{j}\left|\phi_{j}(t)\right\rangle \\
& \begin{aligned}
\left|\phi_{j}(t)\right\rangle= & e^{-i E_{j}}\left|\Phi_{j}\right\rangle^{\text {eigenstate of } H} \begin{array}{c}
\text { only picks up this phase }
\end{array}
\end{aligned}
\end{align*}
$$

General state
wrap C form a complete

Initial condition

$$
\begin{aligned}
|\psi(0)\rangle & =|\psi\rangle \\
\left.\Sigma_{k} c_{k} e_{1}^{-i E_{k t}}\left|\phi_{k}\right\rangle\right|_{t=0} & =|\psi\rangle \\
\Sigma_{k} c_{k}\left|\phi_{k}\right\rangle & =|\psi\rangle \quad \mid\left\langle\Phi_{j}\right| \\
c_{j} & =\left\langle\phi_{j} \mid \psi\right\rangle
\end{aligned}
$$

Recipe for computing the evolution and problems with it

energies

1. Find the evios and eigenstates of the Hamiltonian. Make sure to normalize the eigenstates.
2. Compute the overlaps between the initial state and the eigenstates. We you do this correctly, the overlaps should be normalized. $\sum_{k}\left|c_{k}\right|^{2}=1$
3. Substitute the energies E_{k}, eigenstates $\left|\phi_{k}\right\rangle$ and overlaps $\left\langle\phi_{k} \mid \psi(0)\right\rangle$ to $|\psi(t)\rangle=\sum_{k}\left\langle\phi_{k} \mid \psi(0)\right\rangle e^{-i E_{k} t}\left|\phi_{k}\right\rangle$. Sometimes the solution can be further simplified.

Expectation value and energy eigenstates

$$
\begin{align*}
\langle E\rangle & =\langle\langle | H \mid \psi\rangle . \tag{9}\\
& =\operatorname{Tr}(H|\psi X \psi|) \\
& =\operatorname{Tr}(H S)
\end{align*}
$$

If $|\psi\rangle$ is an energy eigenstate

$$
\langle E\rangle=\langle\psi| E|\psi\rangle=E \text { - eigenvalue }
$$

General expectation value and observables

$$
\begin{aligned}
& \sum_{k} 1 \phi_{k} X \phi_{k}=1 \\
& \rightarrow \\
& \text { not an eigenstate } \\
& \text { pk } \\
& \text { always } \left.=\sum_{k}\langle\psi| H\left|\phi_{k} X \phi_{k}\right| \psi\right\rangle \\
& =\Sigma_{k} E_{k}\langle\psi| \phi_{k} \times \Phi_{k}|\psi\rangle \\
& =\sum_{k} p_{k} E_{k} \\
& P_{K}=\left|\left\langle\psi \mid \phi_{k}\right\rangle\right|^{2} \\
& \text { evaluate } \\
& \text { through } \\
& \text { POUt } M_{k}=\left|\phi_{k} X \phi_{k}\right| \text { sampling }
\end{aligned}
$$ \rightarrow same for any hermitian operator observables

Exercise

Take a Hamiltonian

$$
H=\left(\begin{array}{cc}
3 & 2 \tag{11}\\
2 & -3
\end{array}\right)
$$

And an initial state

$$
\begin{equation*}
|\psi(0)\rangle=\binom{1}{0} \tag{12}
\end{equation*}
$$

Find the evolution of the state $|\psi(t)\rangle$ under H . What will be its expected energy?

