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Announcements
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e Problem set 1 is due 4P Cuv<= l.
(o § y
a*-p

e | require your full solutions, not just the answers

e |f you already submitted a solution but would like to expand on it,
correct something, please do so by the end of the day (otherwise a

late penalty will apply)
e Solved problem sets will appear on the website, also problem set 2
e Has everyone who submitted set O received an email from me?
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Fidelity and Trace distance
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Fidelity #F (p, o) := (Tr\/\/po\/p)
If at least one of the states is pure F = (¢| o |¢)).

Can be interpreted as measuring o with POVM My = |¢) (],
My =T1—[¢) (.

Trace distance Tr(A, B) = 2 Tr|A — B - tells us how easy it is to
N~/

distinguish between A and B, more difficult to measure.



Infidelity and trace distance on pure state

Infidelity: 1 — |(¢)]¢)[? = 'Qi‘u"“b'

Trace distance: /1 — [{1)]¢)|?
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Geometric representation
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Exercise

1. 0< F(p,0) < 1.
2. F(UpU',UcUT) = F(p,0).

3. F(I¥e), 1¥a)) = 1{¥hptho) |2
4. Symmetry: F(p,0) = F(o,p).



Exercise

What is the fidelity and total trace distance between a maximally mixed

state and any pure state?
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Quantum channels

previously:

Rras O pators

O(0) = BjoBl where > BB =1. (1)



Examples of channels
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where 7 is the completely mixed state.

e Depolarizing Channel:

e Dephasing Channel:
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Average fidelity of a quantum channel

Defined with respect to the identity channel Wt "kmﬁ'\’ noise,
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as an average over all state fidelities. To obtain the average, we must
integrate over all the quantum states in a given Hilbert space with equal
weightings and satisfy [ diy» = 1. This is known as integration over Haar

MeEasure.
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Exercise

Compute the fidelity of a qubit depolarizing channel

E(p) = (1 - p) [¥) (] + p. d-cdli memsiong
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Unitary channel

The special case of fidelity between a unitary and the identity can be

simplified through the Nielsen's equation:

Fu) = 40 €
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Exercise

1. Verify that F(/)=1 in (3).

2. The hottest quantum startup promises to do quantum computing by
implementing Hadamard and Toffoli gates. However, they have a
minor issue: their Toffoli gates are not working and they are simply

doing nothing (i.e. identity gates). What is the fidelity of their
2
“Toffoli” gate? 3+6

‘%
3. What if they replace all m—cosntroﬁed—NOT gates with the identity?
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Equations of motion
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Schrodinger equation
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Hamiltonian and energies
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Energy
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Let us take our H = 2Z. What are the energies are their corresponding

eigenstates? Which one is the ground state energy? Verify that for each
eigenstate, multiplying it by e~'® for a real o will also yield an eigenstate

with the same eigenvalue.
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Differential equations
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Formal solution

[¥(t)) = e_”{lzb(o» (7)
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Evolution of eigenstates
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General state
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Initial condition




Recipe for computing the evolution and problems with it

enefgies
Find the emixg@s and eigenstates of the Hamiltonian. Make sure to

normalize the eigenstates.

2. Compute the overlaps between the initial state and the eigenstates.

: >
We you do this correctly, the overlaps should be normalized. Z‘ .c‘\ = ’l

w
3. Substitute the energies Ej, eigenstates |¢,) and overlaps {¢|1(0))

to |1h(t)) = D, (dk|1(0))e™"Ext |px). Sometimes the solution can be

further simplified. —7\- Qea‘c}n‘ S¥ad €y
overlaps Phases with
Lhwevrgies
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Expectation value and energy eigenstates

(E) = (Wl H 1), 0

~Tr(H|’\V)('\I'))
= Tr (KS)

£ 1WY is an enangy elgmsiate
(EY= KVYIE V) = E -eciopmuaku
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General expectation value and observables
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Exercise

Take a Hamiltonian

3 2
H = (11)
2 =3
And an initial state
1
(0)) = ) (12)

Find the evolution of the state |y (t)) under H. What will be its expected

energy?’

26



