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Announcements

• Problem set 0 (Optional):

• one more week

• Question 1 does NOT have a typo

• Problem set 1:

• Bonus question involves regular addition, not mod 2

• you can use CNOTS, To↵ and any single qubit gates

• submit through email/Canvas/Teams

• you can update your solutions before the deadline if you want to
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Today

1. More circuits

2. Linear algebra

3. Quantum states

4. Quantum operations

5. No-cloning theorem (if we have time)

6. Measurement (if we have time)
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Pauli Z and X

Z |0i =

Z |1i =

X |0i =

X |1i =
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Exercise

Compute XZX and ZXZ
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Controlled gates

•

U

If the first qubit is 1, apply U,

otherwise, apply identity

We also sometimes use

U

, meaning If the first qubit is 0, apply U,

otherwise, apply identity
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Linear algebra

A d-dimensional Hilbert space H is a vector space equipped with an

inner product. Let {e i}
d�1
i=0 be the computational basis, where e i is a

column vector of zeros except a ‘1’ at the (i + 1)-th entry. Any vector

v 2 H can be decomposed into basis vectors e i as

v =
d�1X

i=0

vie i , (1)

for some complex number vi 2 C. The inner product (or dot product) ‘·’

of two vectors u and v in the same basis in H is defined as

u · v = u†v =
d�1X

i=0

u
⇤
i vi , (2)

where † denotes transpose and conjugate.
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Dirac notation

Denote |ii ⌘ e i and write v as |vi:

|vi =
d�1X

i=0

vi |ii. (3)

The inner product

hu|vi =
X

i,j

u
⇤
i vjhi |ji =

X

i

u
⇤
i vi (4)

where hu| ⌘ |ui
† is now a row vector and hi |ji = �i,j .
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Vector space basis

{|ii} set of mutually orthogonal normalized vectors.

For a unitary operator U, {U |ii} will be also mutually orthogonal and

normalized.
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Linear maps

L : U ! V

Example: Matrix multiplication
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Linear operators

Given an linear operator L, there is an equivalent matrix representation

[Li,k ] in the basis spanned by {|iihk |}:

L =
d�1X

i,k=0

Li,k |iihk |, (5)

where Li,k = hi |L|ki.

An linear operator H 2 L(H) is called Hermitian i↵ H
† = H. For a

Hermitian matrix H, the spectral theorem states that there exists an

orthonormal basis {|⌫i i} and real numbers {�i} 2 R so that

H =
X

i

�i |⌫i ih⌫i |. (6)

Equivalently, {�i} and {|⌫i i} are known as eigenvalues and eigenvectors

of H, respectively.
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Exercise

Verify that Pauli X is a Hermitian operator and compute its eigenvalues

and eigenvectors.
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Tensor product of Hilbert spaces

Given two vectors |ui 2 HA and |vi 2 HB , the tensor product ‘⌦’ of

them is

|ui ⌦ |vi =
dA�1X

i=0

dB�1X

j=0

uivj |ii ⌦ |ji, (7)

a vector of dAdB -dimension. If {|iiA} and {|jiB} are orthonormal bases

in HA and HB , respectively, then {|iiA ⌦ |jiB}, i 2 {0, · · · , dA � 1} and

j 2 {0, · · · , dB � 1}, forms an orthonormal basis in HA ⌦HB . The inner

product on the space HA ⌦HB is defined by

(hu1|A ⌦ hu2|B) (|v1iA ⌦ |v1iB) = hu1|v1ihu2|v2i. (8)
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Tensor product for operators

Linear operators in L(H):

L⌦M =

0

@
dA�1X

i,j=0

Li,j |iihj |

1

A⌦

0

@
dB�1X

k,`=0

Mk,`|kih`|,

1

A

=
dA�1X

i,j=0

dB�1X

k,`=0

Li,jMk,`|iihj |⌦ |kih`|. (9)
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Trace

The trace maps is defined as

Tr |jihk | = hk |ji = �k,j . (10)

From linearity, the trace of an operator L is

Tr L =
d�1X

i=0

hi |L|ii =
X

j

Lj,j . (11)
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Exercise

• Cyclic property: Show that Tr LM = TrML.

• Show that TrA is independent of the basis of A.
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Partial trace

A generalization of a trace. Partial trace maps an operator to a

lower-dimensional operator. Formally, partial trace

TrA : L(HAB) ! L(HB) is defined by

TrA (|iihj |A ⌦ |kih`|B) = hj |ii|kih`|B = �i,j |kih`|B . (12)

For a composite system on the space HA ⌦HB , TrA gives trace only over

the subsystem on HA and remains subsystem HA intact. We often say

that we ”trace-over A”.
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Quantum states

Use the ket notation |·i to denote a column vector of length one, e.g.,

| i :=

0

@ ↵

�

1

A , (13)

and use the bra notation h·| to denote the hermitian conjugate of |·i:

h | :=
⇣
↵⇤ �⇤

⌘
. (14)

An alternative representation of a quantum state is the density matrix.

For pure states:

� = | i h | (15)
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Joint quantum state

Given | iA 2 HA and |�iB 2 HB , the joint quantum state is

|'iAB ⌘ | iA ⌦ |�iB 2 H ⌘ HA ⌦HB .

If one of the subsystems, say HA, is lost from |'iAB , the residue

quantum state can be expressed as

�B = TrA |'ih'|. (16)

�B isn’t always a pure state but a mixture of states �B :=
P

i pi | i ih i |

where | i i are orthogonal pure states on the subsystem B.
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Exercise

There are three necessary and su�cient criteria that a matrix corresponds

to a valid description to a quantum state. Show that

� :=
X

i

pi | i ih i |, (17)

where
P

i p1 = 1 satisfies all three of them

1. ⇢ is Hermitian 1

2. ⇢ is positive semi-definite 2

3. Tr[⇢] = 1.

1A hermitian matrix A satisfies A† = A.
2Eigenvalues of a positive semi-definitive matrix are real and equal to 0 or positive.
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Mixed states

Not pure states:

• outcome of a random preparation

• part of a larger entangled state

An ensemble of pure states E : {pi , | i i} can be denoted by a density

operator

� :=
X

i

pi | i ih i |, (18)

where | i i are individual states that could be prepared and pi are the

corresponding probabilities. We refer to objects � as density matrices.
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Pure states

If ⇢ is pure, it can be written as a projector on the corresponding pure

state | i

� = | ih |. (19)

Projectors have the property that (| ih |)2 = | ih |
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Exercise

Let |�iAB = 1p
2
(|0iA ⌦ |1iB � |1iA ⌦ |0iB). Compute TrA(|�ih�|AB) and

TrB(|�ih�|AB). Discuss whether the result could be a pure state (no

need to prove it).
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Church of the larger Hilbert space

Suppose that the person, say Alice, who prepares this ensemble can keep

track of ‘which state’ she prepared. In other words, she has the additional

classical label |xihx | attached to the state �x 2 D(HB), where {|xi}

forms an orthonormal basis of HX . Such a hybrid classical-quantum

system can be described as

�XB =
X

x2X
px |xihx |⌦ | xih x |. (20)
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Unitary evolution

| i ! U | i . (21)

For a general quantum state described by a density matrix (21) takes

form

⇢! U⇢U† =
X

i

U | i ih i |U
†. (22)
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Schrödinger equation

i~ d

dt
| i = H| i (23)

where ~ is the Planck constant and H is the system Hamiltonian.

Eigenvalues of Hamiltonian define the allowed energies of a system.

Physicists and chemists really care about this!!
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Exercise

Define purity of a quantum state as Tr[⇢2]. Show that unitary operations

preserve purity, i.e. a pure state never gets mapped onto a mixed state

and vice versa.
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CPTP maps

Channels are the most general operation of quantum states. They must

be always map quantum states onto quantum states, even if if we apply

the channel only on a subset of qubits. Any such channel can be written

as

�(�) =
X

i

Bi�B
†
i where

X

i

BiB
†
i = 1. (24)
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No cloning theorem

Theorem (No-Cloning theorem)

There is no unitary operation Ucopy on HA ⌦HB such that for all

| iA 2 HA and |0iB 2 HB

Ucopy(|�iA ⌦ |0iB) = e
if (�)

|�iA ⌦ |�iB (25)

for some number f (�) that depends on the initial state |�i.
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Exercise

Prove the no-cloning theorem by contradiction.

a Assuming Ucopy exists, take two states |�Ai and | i. Now apply

Ucopy on both of them and compute the resulting inner product

(h�|A ⌦ h0|B)U†
copyUcopy(| iA ⌦ |0iB).

b Explain how (a) leads to a contradiction.
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Quantum measurement

Obtain classical information from a quantum state. It can destroy the

superposition property of a quantum state.

Observe this qubit in state |0i with probability |↵|2 and in state |1i with

probability |�|2. Furthermore, after the measurement, the qubit state |bi

will disappear and collapse to the observed state |0i or |1i.
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General quantum measurement

A collection of ⌥ := {Mi}, where each measurement operator

Mi 2 L(H) satisfies
X

i

Mi = I (26)

and each Mi is positive semi-definite operator. We call this

measurements positive operator-valued measure (POVM). The

probability of obtaining an outcome i on a quantum state ⇢ is

pi := Tr(Mi⇢). (27)

The state after measurement will be altered as

⇢i :=
Mi⇢

pi
.
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Projective measurement

Each Mi is a projector

pj := Tr (Pj |�ih�|)

and the resulting state
Pj |�i
p
pj

.
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