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Announcements

e Problem set 0 (Optional):

e one more week

e Question 1 does NOT have a typo

e Problem set 1:

e Bonus question involves regular addition, not mod 2 O fb s¢

e you can use CNOTS, Toff and any single qubit gates

o it Jusk peeds o work
e submit through email/Canvas/Teams

e you can update your solutions before the deadline if you want to



1. More circuits

2. Linear algebra

3. Quantum states

4. Quantum operations

5. No-cloning theorem (if we have time)

6. Measurement (if we have time)
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A
221(0)= |07 .:(" O) > =ljoXo|-14X1|
> O 24 Loyty,=0

- Lt..o'o.z-t
-~ (O 4) = |AXol +o¥1 ]

4= (;°\= lo Xo | 4 11%11
Led’um.v\m"



Exercise

Compute XZX and ZXZ



Controlled gates

U

RGBSR -y U, 1X9|®V +loX0l e 1]

otherwise, apply identity
itHis 0
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We also sometimes use

| , meaning If the first qubit is& apply U,

otherwise, apply identity
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Linear algebra

Linile
A[d-dimensional(Hilbert space 7 is a vector space equipped with an

inner product. Let {e;}9"! be the computational basis, where e; is a
P =0

A
{1 ) column vector of zeros except a ‘1’ at the (i + 1)-th entr)\, Any vector

o
v € H can be decomposed into basis vectors e; as d
9
d—1 linewr }?

v=)> vie;, comb of (1)

i=0 nasis vedrors

for some complex number v; € C. The inner product (or dot product)

of two vectors u and v in the same basis in H is defined as

where | denotes transpose and conjugate.



hadis
vecto¥
Denote |i) = e; and write v as |v):
d—1
v) =) vili). (3)
i=0
qa €}
The inner product &7 \:.:... | D
braked
.z o
W& = (ulv)=> uivilj) =) ufv (4)

where (u| = |u)T is now a row vector and](il;

Uronecker delta
5= < 4 i& =2y
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Vector space basis

Lor eadh Vi Gitizs

{|i)} set of mutually orthogonal normalized vectors.

For a unitary operator U, {U |i)} will be also mutually orthogonal and

normalized.



Linear maps

L:U—V

Example: Matrix multiplication



Linear operators

Given an linear operator L, there is an equivalent matrix representation

[Li k] in the basis spanned by {|i)(k|}:
we did s

d—1
L= L)k, eapliee (5)

i.k=0

whereJL; = (i|L|k).

An linear operator H € L(H) is called Hermitian iff HT = H. For a

Hermitian matrix H, the spectral theorem states that there exists an

orthonormal basis {|v;)} and real numbers {)\,-}‘EhR so that is ok 19

H=S" M), u,.(*h,z. O\ (s
i o B PN

Equivalently, {\;} and {|v;)} are known as eigenvalues and eigenvectors
of H, respectively.
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Exercise

Verify that Pauli X is a Hermitian operator and compute its eigenvalues

and eigenvectors.
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Tensor product of Hilbert spaces

Given two vectors |u) € Ha and{|v) € Hp, the tensor product ‘®’ of

them is
da—1dg—1
M= (v elv) =Y Y uyli) L)), | (7)
i=0 j=0 normalided (

t. oriwogor &
a vector of dadg=dimension. If {|i)4} and {|j)g} are orthonormal bases

in Ha and Hp, respectively, then {|Ha® |j)g}, i €{0,---,da— 1} and
j€40,--- ,dg — 1}, forms an orthonormal basis in Ha ® Hpg. The inner

product on the space Ha ® Hpg is defined by

({u1]a @ (w2|8) (Jv1)a ® [v1)B) = (u1|v1)(u2|v2). (8)
|0AY = 107212 (04 (4147 54011 £1]1D
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Tensor product for operators

Linear operators in L(H): y A 0(3
da—1 ds—1
LoM = (Z Li,ji><j) ® (Z Mk,£k><€7>
i j=0 k £=0

da—1 dg—1
= ) > L:JMkei YUl @ [k){£]. ' (9)
i.j=0 k £=0
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Trace

A = ( ) THA\"Z:.' A

The trace maps is defined as
Tr|j) (k| = (k|j) = 0. (10)

From linearity, the trace of an operator L is

(11)

T Wap$s opc\-od»or o a Sct\luh,
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Exercise

4. o Cyclic property: Show that Tr LM = Tr ML.

Z o Show that TrA is independent of the basis of A.

h) = Uh)
vr(w\: 2 ¢i ‘5'\4\0 2; GlL (S uxa\"ll.)
‘ L= 2 l})(}‘
= 2. <cu.t;><élr1|.V-Z‘Lamx.hxz.\p
sw\\ms
*2 l;““ll.lx) = T (ML)
. Te(A)s (‘\MQ (1D >0

T\"(A‘\ : (;W AUh) '§_" i IAU:L)\.Zv a«(;\m.)
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Partial trace

A generalization of a trace. Partial trace maps an operator to a

lower-dimensional operator. Formally, partial trace

Tra: L(Hag) — L(Hp) is defined by
”

Tra (1) {ila ® [K){€l8) = (j1)|k) (L5 = 6 ;|k)(£]s. (12)
Trg 1iXila LLIRY

For a composite system on the space Ha ® Hpg, Tra gives trace only over
the subsystem on H 4 and remains subsystem H 4 intact. We often say

that we "trace-over A" .
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Quantum states

€\ >

Use the ket notation |-) to denote a column vector of length one, e.g.,

)y = . (13)
8

and use the bra notation (-| to denote the hermitian conjugate of |):

Wl={a ). (14)

An alternative representation of a quantum state is the density matrix.

For pure states: d"“& OPW

oy = |1) () (15)
Pro g ctor on tWD
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Joint quantum state

Given |¢)a € Ha and |¢p)g € Hp, the joint quantum state is
[P ag = [V)a®|p)s € H=Ha®Hsp.

If one of the subsystems, say H 4, is lost from |p)ag, the residue

quantum state can be expressed as

og = Tralp)(p|. (16)

D

op isn't always a pure state but a mixture of states og := ). p;|1;) (¢i]

where [1);) are orthogonal pure states on the subsystem B.
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Exercise

There are three necessary and sufficient criteria that a matrix corresponds

to a valid description to a quantum state. Show that

In e bagis oF %D

‘ ¢::Zp;\w;><¢;\, S= (P.N 0) (17)

o P

where ), pj,= 1 satisfies all three of them
N al P Sadisky Os=p;€ 1 g real

Jl. o is Hermitian ! Q"=T‘; P? “,\hx ;w;')"': Z:ip‘. W?)(w..‘
./2. p is positive semi-definite 2

V3. Trlpl = 1.

LA hermitian matrix A satisfies AT = A.
2Eigenvalues of a positive semi-definitive matrix are real and equal to 0 or positive.
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Mixed states

31: 10002 L s5ex008(4
y 2K 10049) 6

Not pure states: 3:10107
G ;) 099)
§: 1400)
6: 11014)

e outcome of a random preparation

e part of a larger entangled state

An ensemble of pure states £ : {p;, |¥;)} can be denoted by a density
TeowN

operator

o= ZP/WOW:'\, (18)

where [1);) are individual states that could be prepared and p; are the

corresponding probabilities. We refer to objects o as density matrices.

ope roJoU
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If p is pure, it can be written as a projector on the corresponding pure

state |v)

oy = [} (Y], (19)

Projectors have the property that (|¢)(1])? = |¢)(¢)]

INXWINXY| = WXV

—\
& o ¢ Yyou Show Haunt oo
Qo’z O\‘ < y\o\'muh'&et\ T sahisfies

4 W;:' T Wan T 1S o~
proy = PW shc\"- 21



Exercise

Let ‘(D>AB — %(|O>A &) ‘]—>B — |]->A X |0>B) Compute TrA(|¢><¢‘AB) and
Trg(|®)(P|ag). Discuss whether the result could be a pure state (no

need to prove it).
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Church of the larger Hilbert space

Suppose that the person, say Alice, who prepares this ensemble can keep
track of ‘which state’ she prepared. In other words, she has the additional
classical label |x)(x| attached to the state o, € D(Hg), where {|x)}

forms an orthonormal basis of Hx. Such a hybrid classical-quantum

system can be described as

OXB — Z pX|X><X| & |¢X><¢X| (20)

xeX

Pw'li-‘itw":o'\ -~ a,ddtua uud""ul,
sptevn to represent o dumsily optgtor
an & Pant of ow pung Sate
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Unitary evolution

) = Uly). (21)

For a general quantum state described by a density matrix (21) takes

form

p— UpUT =) WUl (| U (22)
teu‘uauib n

Mi\-anﬁb samcdw i th

24



Schrodinger equation

-ild
A e w12=€, Vo)
inZ 1) = Hly) wakelr ()3)
dt Exponenty, |

where h is the Planck constant and H is the system Hamiltonian. & hmﬂ-&;‘

Eigenvalues of Hamiltonian define the allowed energies of a system.

-4+

Physicists and chemists really care about this!! é, 'S

wn\'“’“ﬂa.

25



Exercise

Define purity of a quantum state as Tr[p?]. Show that unitary operations
preserve purity, i.e. a pure state never gets mapped onto a mixed state

and vice versa.

"
{ we Hun V=S (progcer)
R 1 P so Fe () = Trl(€) < 4

0< Tl \< 1 for mirecl
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CPTP maps

Channels are the most general operation of quantum states. They must
be always map quantum states onto quantum states, even if if we apply

the channel only on a subset of qubits. Any such channel can be written

®(0) =Y BjoBl where M (24)

Krowus dtcom":osa'#:on b B: Dis AL

as
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No cloning theorem

Theorem (No-Cloning theorem)
There is no unitary operation U.opy on Ha & Hp such that for all

W4 < Haand|0)g € Hp
192, Ucopy (1804 ®10)8) = " [d)a © )5 (25)

for some number f(¢) that depends on the initial state |¢).
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Exercise

Prove the no-cloning theorem by contradiction. on 4
M

a Assuming Uopy exists, take two states |pg) and |¢b). Now apply

Ucopy on both of them and compute the resulting inner product

((Pla ® <O‘B)U§oprCOpy(W>A® 0)B). —H‘E

b Explain how (a) leads to a contradiction. \
P> e 10> or 149 END
1§ (©) (0D =5 (00>
109 (1210 D 111)
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Quantum measurement

Obtain classical information from a quantum state. It can destroy the

superposition property of a quantum state.

Observe this qubit in state |0) with probability |a|? and in state |1) with
probability |3|%. Furthermore, after the measurement, the qubit state |b)

will disappear and collapse to the observed state |0) or |1).
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General quantum measurement

A collection of T := {M;}, where each measurement operator

M; € L(H) satisfies
> M= (26)

and each M; is positive semi-definite operator. We call this
measurements positive operator-valued measure (POVM). The

probability of obtaining an outcome / on a quantum state p is
pPi - — TI’(M,',O). (27)

The state after measurement will be altered as

Mip
Pi - — .
Pi

31



Projective measurement

Each M; is a projector
pj = Tr(Pj|®)(¢])
and the resulting state
Pil¢)
VP
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