Methods in quantum computing

Mária Kieferová
August 15, 2023

University of Technology Sydney

Announcements

- Problem set 0 (Optional):
- one more week
- Question 1 does NOT have a typo
- Problem set 1 :
- Bonus question involves regular addition, not mod 2

$a+b=c$

- you can use CNOTS, Toff and any single qubit gates
- it just needs to work
- submit through email/Canvas/Teams
- you can update your solutions before the deadline if you want to

Today

1. More circuits
2. Linear algebra
3. Quantum states
4. Quantum operations
5. No-cloning theorem (if we have time)
6. Measurement (if we have time)

Pauli Z and X

$$
\begin{aligned}
& \begin{array}{l}
x(0)=11\rangle \\
x(1)=10\rangle
\end{array} \quad x=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad x=|1 \times 01+10 \times 1| \\
& \mathbb{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=10 \times 01+|1 \times 1|
\end{aligned}
$$

Lecture notes 1

Exercise

Compute XZX and ZXZ

Controlled gates

If the first quit is apply, U. $|1 \times 1| \otimes U+|0 \times 0| \bullet 11$
otherwise, apply identity c"-0

$$
A^{2}+i+1 s 0
$$

$$
\begin{aligned}
\text { CNOT } & =10 \times 0101+11 \times 1 \mid 0 \times \\
& =10 \times 010(10 \times 01+\ln \times 11)+\mid 1 \times 110(0 \times 1 \mid++1 \times 0)
\end{aligned}
$$

We also sometimes use \qquad meaning If the first quit is
\qquad $10 \times 01 \otimes 0+|1 \times 1| \otimes 11$

Linear algebra

finite

A d -dimensional Hilbert space \mathcal{H} is a vector space equipped with an

$\langle\boldsymbol{\langle}\rangle$ column vector of zeros except a ' 1 ' at the ($i+1$)-th entry Any vector $\boldsymbol{v} \in \mathcal{H}$ can be decomposed into basis vectors $\boldsymbol{e}_{\boldsymbol{i}}$ as

$$
\boldsymbol{v}=\sum_{i=0}^{d-1} v_{i} \boldsymbol{e}_{i}, \begin{align*}
& \text { linear } \tag{1}\\
& \text { comb of } \\
& \text { basis vectors }
\end{align*}
$$

for some complex number $v_{i} \in \mathbb{C}$. The inner product (or dot product) '.' of two vectors \boldsymbol{u} and \boldsymbol{v} in the same basis in \mathcal{H} is defined as

$$
u \cdot v=u^{\dagger} v=\sum_{i=0}^{d-1} u_{i}^{*} v_{i}, \quad \begin{aligned}
& \text { this is how } \\
& \text { it's computed }
\end{aligned}
$$

where \dagger denotes transpose and conjugate.

Dirac notation
basis
vector
Denote $|i\rangle \equiv \boldsymbol{e}_{i}$ and write \boldsymbol{v} as $|\boldsymbol{v}\rangle$:

$$
\begin{equation*}
|v\rangle=\sum_{\boldsymbol{\Omega}=0}^{d-1} v_{i}|i\rangle . \tag{3}
\end{equation*}
$$

The inner product bra <1 braket ${ }^{\circ}$ Ret 1\rangle

$$
\begin{equation*}
\boldsymbol{\mu}^{\mathbf{+}} \boldsymbol{\sim}=\langle u \mid v\rangle=\sum_{i, j} u_{i}^{*} v_{j}\langle i \mid j\rangle=\sum_{i} u_{i}^{*} v_{i} \tag{4}
\end{equation*}
$$

where $\langle u| \equiv|u\rangle^{\dagger}$ is now a row vector and
Kronecker delta

$$
\delta_{i, j}=\left\{\begin{array}{l}
1 \text { if } i=j \\
0
\end{array} \quad i \neq j\right.
$$

$$
\begin{aligned}
& \langle i \mid j\rangle=\delta_{i, j} \\
& i=j \rightarrow\langle i \mid j\rangle=1 \\
& i \neq j \rightarrow\langle i \mid j\rangle=0
\end{aligned}
$$

Vector space basis

for each $|i\rangle,\langle i \mid i\rangle=1$
 if $i \neq j\langle i \mid j\rangle=0$

$\{|i\rangle\}$ set of mutually orthogonal normalized vectors.
For a unitary operator $U,\{U|i\rangle\}$ will be also mutually orthogonal and normalized.

Linear maps

$L: U \rightarrow V$

Example: Matrix multiplication

Linear operators

Given an linear operator L, there is an equivalent matrix representation $\left[L_{i, k}\right]$ in the basis spanned by $\{|i\rangle\langle k|\}$:

$$
\begin{equation*}
L=\sum_{i, k=0}^{d-1} L_{i, k}|i\rangle\langle k|, \tag{5}
\end{equation*}
$$

we did this easlier!
where $L_{i, k}=\langle i| L|k\rangle$.
An linear operator $H \in \mathcal{L}(\mathcal{H})$ is called Hermitian iff $H^{\dagger}=H$. For a Hermitian matrix H, the spectral theorem states that there exists an orthonormal basis $\left\{\left|\nu_{i}\right\rangle\right\}$ and real numbers $\left\{\lambda_{i}\right\} \in \mathbb{R}$ so that basis of $\left|\boldsymbol{v}_{i}\right\rangle$

$$
H=\sum_{i} \lambda_{i}\left|\nu_{i}\right\rangle\left\langle\nu_{i}\right| . \quad \boldsymbol{H}=\left(\begin{array}{llll}
\boldsymbol{\lambda}_{\mathbf{1}} & & & \boldsymbol{0} \tag{6}\\
& \boldsymbol{x}_{\mathbf{2}} & & \\
\boldsymbol{0}^{2} & \ddots \boldsymbol{\lambda}_{\boldsymbol{n}}
\end{array}\right)
$$

Equivalently, $\left\{\lambda_{i}\right\}$ and $\left\{\left|\nu_{i}\right\rangle\right\}$ are known as eigenvalues and eigenvectors of H, respectively.

Exercise

Verify that Pauli X is a Hermitian operator and compute its eigenvalues and eigenvectors.

Tensor product of Hilbert spaces

Given two vectors $|u\rangle \in \mathcal{H}_{A}$ and $|v\rangle \in \mathcal{H}_{B}$, the tensor product ' \otimes ' of them is

$$
\mathbf{| \mu , \boldsymbol { v }} \mathbf{|}=|u\rangle \otimes|v\rangle=\sum_{i=0}^{d_{A}-1} \sum_{j=0}^{d_{B}-1} u_{i} v_{j}|i\rangle \otimes|j\rangle
$$

normalized mut. orthogonal a vector of $d_{A} d_{B}$-dimension. If $\left\{|i\rangle_{A}\right\}$ and $\left\{|j\rangle_{B}\right\}$ are orthonormal bases in \mathcal{H}_{A} and \mathcal{H}_{B}, respectively, then $\left\{|i\rangle_{A} \otimes|j\rangle_{B}\right\}, i \in\left\{0, \cdots, d_{A}-1\right\}$ and $j \in\left\{0, \cdots, d_{B}-1\right\}$, forms an orthonormal basis in $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$. The inner product on the space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ is defined by

$$
\begin{align*}
& 101\rangle=|0\rangle \otimes|1\rangle\left\langle\left\langleu _ { 1 } \left\langle\otimes\left\langle\left. u_{2}\right|_{B}\right)\left(\left|v_{1}\right\rangle_{A} \otimes\left|v_{1}\right\rangle_{B}\right)=\left\langle u_{1} \mid v_{1}\right\rangle\left\langle u_{2} \mid v_{2}\right\rangle .\right.\right.\right. \tag{8}\\
& 111\rangle=11\rangle 1\rangle=\langle 011\rangle \cdot\langle 1 \mid 1\rangle \\
& \mid=0
\end{align*}
$$

Tensor product for operators

Linear operators in $\mathcal{L}(\mathcal{H})$: $\boldsymbol{2}_{4} \mathcal{\chi}_{B}$

$$
\begin{align*}
L \otimes M & =\left(\sum_{i, j=0}^{d_{A}-1} L_{i, j}|i\rangle\langle j|\right) \otimes\left(\sum_{k, \ell=0}^{d_{B}-1} M_{k, \ell}|k\rangle\langle\ell|,\right) \\
& =\sum_{i, j=0}^{d_{A}-1} \sum_{k, \ell=0}^{d_{B}-1} L_{i, j} M_{k, \ell}|i\rangle\langle j| \otimes|k\rangle\langle\ell| . \tag{9}
\end{align*}
$$

Trace

$$
A=(\quad) \quad \operatorname{Tr}(A)=\sum_{i} A_{i, i}
$$

The trace maps is defined as

$$
\begin{equation*}
\operatorname{Tr}|j\rangle\langle k|=\langle k \mid j\rangle=\delta_{k, j} . \tag{10}
\end{equation*}
$$

From linearity, the trace of an operator L is

$$
\begin{equation*}
\operatorname{Tr} L=\sum_{i=0}^{d-1}\langle i| L|i\rangle=\sum_{j} L_{j, j} . \tag{11}
\end{equation*}
$$

Tr maps operator to a scalar

1. Cyclic property: Show that $\operatorname{Tr} L M=\operatorname{Tr} M L$.
2. Show that $\operatorname{Tr} A$ is independent of the basis of A.
$\left.|i\rangle \rightarrow V_{1 i}\right\rangle$

$$
\text { 1. } \begin{aligned}
& \operatorname{Tr}(L M)=\sum_{i}\langle i| L M|i\rangle=\sum_{i}\langle i| L\left(\Sigma_{j}\left|j X_{j}\right| M|i\rangle\right. \\
&=\sum_{i j}\langle i| L|j\rangle\left\langle\Sigma_{j}\right| j X_{j} \mid \\
&\left.\left.\Gamma_{\text {scalars }}|M| i\right\rangle=\sum_{i j}\langle j| M X_{i}\left|i X_{L}\right| j\right\rangle \\
&=\sum_{j}\langle j| M L|j\rangle=\operatorname{Tr}(M L)
\end{aligned}
$$

2. $\operatorname{Tr}(A)=\Sigma_{i}\langle i| A|i\rangle \quad|i\rangle \rightarrow U|i\rangle$

Partial trace

A generalization of a trace. Partial trace maps an operator to a lower-dimensional operator. Formally, partial trace
$\operatorname{Tr}_{A}: \mathcal{L}\left(\mathcal{H}_{A B}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{B}\right)$ is defined by

$$
\begin{align*}
& \operatorname{Tr}_{A}\left(|i\rangle\left\langle\left. j\right|_{A} \otimes \mid k\right\rangle\left\langle\left.\ell\right|_{B}\right)=\langle j \mid i\rangle|k\rangle\left\langle\left.\ell\right|_{B}=\delta_{i, j} \mid k\right\rangle\left\langle\left.\ell\right|_{B} .\right.\right. \tag{12}\\
& T_{B}
\end{align*}
$$

For a composite system on the space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}, \operatorname{Tr}_{A}$ gives trace only over the subsystem on \mathcal{H}_{A} and remains subsystem \mathcal{H}_{A} intact. We often say that we "trace-over A ".

Quantum states

$\langle 1\rangle$

Use the ket notation $|\cdot\rangle$ to denote a column vector of length one, e.g.,

$$
\begin{equation*}
|\psi\rangle:=\binom{\alpha}{\beta} \tag{13}
\end{equation*}
$$

and use the bra notation $\langle\cdot|$ to denote the hermitian conjugate of $|\cdot\rangle$:

$$
\langle\psi|:=\left(\begin{array}{ll}
\alpha^{*} & \beta^{*} \tag{14}
\end{array}\right) .
$$

An alternative representation of a quantum state is the density matrix.
For pure states:
desity operator

$$
\begin{align*}
& \sigma_{\psi}=|\psi\rangle\langle\psi| \tag{15}\\
& \quad \text { proféctor on }|\psi\rangle
\end{align*}
$$

Joint quantum state

Given $|\psi\rangle_{A} \in \mathcal{H}_{A}$ and $|\phi\rangle_{B} \in \mathcal{H}_{B}$, the joint quantum state is
$|\varphi\rangle_{A B} \equiv|\psi\rangle_{A} \otimes|\phi\rangle_{B} \in \mathcal{H} \equiv \mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
If one of the subsystems, say \mathcal{H}_{A}, is lost from $|\varphi\rangle_{A B}$, the residue quantum state can be expressed as

$$
\begin{equation*}
\sigma_{B}=\operatorname{Tr}_{A}|\varphi\rangle\langle\varphi| . \tag{16}
\end{equation*}
$$

|*)

σ_{B} isn't always a pure state but a mixture of states $\sigma_{B}:=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ where $\left|\psi_{i}\right\rangle$ are orthogonal pure states on the subsystem \mathbf{B}.

Exercise

There are three necessary and sufficient criteria that a matrix corresponds to a valid description to a quantum state. Show that

In the basis of $\left|\psi_{p}\right\rangle$

$$
\boldsymbol{S}:=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|, \quad \boldsymbol{S}=\left(\begin{array}{lll}
\boldsymbol{P}_{\mathbf{0}} & & \tag{17}\\
& \mathbf{P}_{\mathbf{1}} & \\
\boldsymbol{0} & & \\
\boldsymbol{P}_{\mathbf{2}} & \ddots
\end{array}\right)
$$

where $\sum_{i} p_{i}=1$ satisfies all three of them
\rightarrow all p satisfy $0 \leq p ; \leq 1$ real 1. ρ is Hermitian ${ }^{1} S^{t}=\Sigma_{i}^{1} p_{i}^{*}\left(1 \psi_{i} X \psi_{i} \mid\right)^{t}=\sum_{i}^{1} ; p_{i}\left|\psi_{i} X \psi_{i}\right|$
2. ρ is positive semi-definite ${ }^{2}$
3. $\operatorname{Tr}[\rho]=1$.

[^0]
Mixed states

Not pure states:

- outcome of a random preparation

$$
\left\{\begin{array}{l}
1: 1000\rangle \\
2: 1001\rangle \\
3: 1000 \times 00011 \\
3: 1010\rangle \\
4: 1019\rangle \\
5: 1100\rangle \\
6: 1101\rangle
\end{array}\right.
$$

- part of a larger entangled state

An ensemble of pure states $\mathcal{E}:\left\{p_{i},\left|\psi_{i}\right\rangle\right\}$ can be denoted by a density CON operator

$$
\begin{equation*}
\sigma:=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \tag{18}
\end{equation*}
$$

where $\left|\psi_{i}\right\rangle$ are individual states that could be prepared and p_{i} are the corresponding probabilities. We refer to objects σ as density matrices.

Pure states

If ρ is pure, it can be written as a projector on the corresponding pure state $|\psi\rangle$

$$
\begin{equation*}
\sigma_{\psi}=|\psi\rangle\langle\psi| . \tag{19}
\end{equation*}
$$

Projectors have the property that $(|\psi\rangle\langle\psi|)^{2}=|\psi\rangle\langle\psi|$

$|\psi \times \underbrace{\psi \mid \psi} \times \psi|=|\psi \times \psi|$
If you show that a normalized σ satisfies $\sigma^{2}=\sigma$ then σ is a proj \Rightarrow pure state

Exercise

Let $|\Phi\rangle_{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|1\rangle_{B}-|1\rangle_{A} \otimes|0\rangle_{B}\right)$. Compute $\operatorname{Tr}_{A}\left(|\Phi\rangle\left\langle\left.\Phi\right|_{A B}\right)\right.$ and $\operatorname{Tr}_{B}\left(|\Phi\rangle\left\langle\left.\Phi\right|_{A B}\right)\right.$. Discuss whether the result could be a pure state (no need to prove it).

Church of the larger Hilbert space

Suppose that the person, say Alice, who prepares this ensemble can keep track of 'which state' she prepared. In other words, she has the additional classical label $|x\rangle\langle x|$ attached to the state $\sigma_{x} \in \mathcal{D}\left(\mathcal{H}_{B}\right)$, where $\{|x\rangle\}$ forms an orthonormal basis of \mathcal{H}_{X}. Such a hybrid classical-quantum system can be described as

$$
\begin{equation*}
\sigma_{X B}=\sum_{x \in \mathcal{X}} p_{x}|x\rangle\langle x| \otimes\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right| . \tag{20}
\end{equation*}
$$

purification adding another system to represent a density operator as a pant of a pure state

Unitary evolution

$$
\begin{equation*}
|\psi\rangle \rightarrow U|\psi\rangle . \tag{21}
\end{equation*}
$$

For a general quantum state described by a density matrix (21) takes form

$$
\begin{align*}
& \rho \rightarrow U_{\rho} U^{\dagger}=\sum U\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| U^{\dagger} . \tag{22}\\
& \text { conjugation } \\
& \text { unitang sandwich }
\end{align*}
$$

Schrödinger equation

$$
\hat{\|}_{i \hbar} \frac{d}{d t}|\psi\rangle=H|\psi\rangle \quad \begin{gathered}
\text { operator } \\
|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle \\
\left.\begin{array}{c}
\text { matrix } \\
\text { exponentian }
\end{array}\right)
\end{gathered}
$$

where \hbar is the Planck constant and H is the system Hamiltonian. \leftarrow hermition
Eigenvalues of Hamiltonian define the allowed energies of a system.
Physicists and chemists really care about this!! $e^{-i H t}$ is

Define purity of a quantum state as $\operatorname{Tr}\left[\rho^{2}\right]$. Show that unitary operations
preserve purity, ie. a pure state never gets mapped onto a mixed state and vice versa.
If P is pure then $S^{2}=S$ (profictor) so $\operatorname{Tr}\left(S^{2}\right)=\operatorname{Tr}(\rho)=1$
$0<\operatorname{Tr}\left[p^{2}\right]<1$ for mixed

CPTP maps

Channels are the most general operation of quantum states. They must be always map quantum states onto quantum states, even if if we apply the channel only on a subset of qubits. Any such channel can be written as
Kraus decomposition $\sum_{\sum_{i}^{i} B_{i}^{+} B_{i}=\mathbb{1}}$

No cloning theorem

Theorem (No-Cloning theorem)
There is no unitary operation $U_{\text {copy }}$ on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ such that for all
$\cup \|_{A} \in \mathcal{H}_{A}$ and $|0\rangle_{B} \in \mathcal{H}_{B}$
$|\phi\rangle_{A}$

$$
\begin{equation*}
U_{\text {copy }}\left(|\phi\rangle_{A} \otimes|0\rangle_{B}\right)=e^{i f(\phi)}|\phi\rangle_{A} \otimes|\phi\rangle_{B} \tag{25}
\end{equation*}
$$

for some number $f(\phi)$ that depends on the initial state $|\phi\rangle$.

Exercise

Prove the no-cloning theorem by contradiction. on 4
a Assuming $U_{\text {copy }}$ exists, take two states $|\phi\rangle$ and $|\psi\rangle$. Now apply $U_{\text {copy }}$ on both of them and compute the resulting inner product

$$
\left(\left\langle\left.\phi\right|_{A} \otimes\left\langle\left. 0\right|_{B}\right) U_{\text {copy }}^{\dagger} U_{\text {copy }}\left(|\psi\rangle_{A} \otimes|0\rangle_{B}\right)\right.\right.
$$

b Explain how (a) leads to a contradiction.

$$
\begin{aligned}
& |\phi\rangle \in|0\rangle \text { or }|1\rangle \\
& |\phi\rangle \&|0\rangle|0\rangle \rightarrow|00\rangle \\
& |0\rangle \in|1\rangle 10\rangle \rightarrow|m\rangle
\end{aligned}
$$

END

Quantum measurement

Obtain classical information from a quantum state. It can destroy the superposition property of a quantum state.

Observe this qubit in state $|0\rangle$ with probability $|\alpha|^{2}$ and in state $|1\rangle$ with probability $|\beta|^{2}$. Furthermore, after the measurement, the qubit state $|b\rangle$ will disappear and collapse to the observed state $|0\rangle$ or $|1\rangle$.

General quantum measurement

A collection of $\Upsilon:=\left\{M_{i}\right\}$, where each measurement operator $M_{i} \in \mathcal{L}(\mathcal{H})$ satisfies

$$
\begin{equation*}
\sum_{i} M_{i}=1 \tag{26}
\end{equation*}
$$

and each M_{i} is positive semi-definite operator. We call this measurements positive operator-valued measure (POVM). The probability of obtaining an outcome i on a quantum state ρ is

$$
\begin{equation*}
p_{i}:=\operatorname{Tr}\left(M_{i} \rho\right) . \tag{27}
\end{equation*}
$$

The state after measurement will be altered as

$$
\rho_{i}:=\frac{M_{i} \rho}{p_{i}} .
$$

Projective measurement

Each M_{i} is a projector

$$
p_{j}:=\operatorname{Tr}\left(P_{j}|\phi\rangle\langle\phi|\right)
$$

and the resulting state

$$
\frac{P_{j}|\phi\rangle}{\sqrt{p_{j}}} .
$$

[^0]: ${ }^{1}$ A hermitian matrix A satisfies $A^{\dagger}=A$.
 ${ }^{2}$ Eigenvalues of a positive semi-definitive matrix are real and equal to 0 or positive.

