Assessment 0 for 41076: Methods in Quantum Computing

This is an optional problem set for students who want to refresh their knowledge of elementary quantum computing and linear algebra.

1. Do the following expressions correspond to normalized quantum states?
(a) $\frac{1}{2}|0\rangle+\frac{\sqrt{3}}{2}$
(b) $\frac{1}{2}|0\rangle+\frac{-1}{2}|1\rangle+\frac{i}{2}|2\rangle+\frac{-i}{2}|3\rangle$
(c) $\binom{0.3}{0.7} \times$
a) We cannot add numbers such as $\frac{\sqrt{3}}{2}$ to ket objects like $\frac{1}{2}|0\rangle$. Therefore this is Not a quantum state. $\frac{1}{2}|0\rangle+\frac{\sqrt{3}}{2}|1\rangle$ would correspond to a quantum state because

$$
\left|\frac{1}{2}\right|^{2}+\left|\frac{\sqrt{3}}{2}\right|^{2}=\frac{1}{4}+\frac{3}{4}=1
$$

b) This is a quantum state because

$$
\left|\frac{1}{2}\right|^{2}+\left|\frac{-1}{2}\right|^{2}+\left|\frac{1}{2}\right|^{2}+\left|\frac{1}{2}\right|^{2}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4} \text {. }
$$

It is a state on two gubits which could be also expressed as

$$
\frac{1}{2}|00\rangle+\frac{-1}{2}|01\rangle+\frac{i}{2}|10\rangle+\frac{-i}{2}|11\rangle
$$

in binary notation
c) This vector is not normalized, therefore not $10.31^{2}+10.71^{2} \neq 1$ a state.
2. Suppose that we perform a measurement in computational basis on the state $\frac{1}{2}|0\rangle+\frac{\sqrt{3}}{2}|1\rangle$. What states can we measure and what would be the probabilities for each measurement?
When we measure in the computational basis, we can defect states $|0\rangle$ and $|1\rangle$. The computational basis is also known as the z basis and the measurements will correspond to $z^{\prime} s$ eigenvalues:
|07 $\rightarrow+1$ outcome
$117 \rightarrow-1$ out come
The probabilities are $\left|\frac{1}{2}\right|^{2}=\frac{1}{4}$ for detecting $10)$ and $\left|\frac{\sqrt{3}}{2}\right|^{2}=\frac{3}{4}$ for detecting 11 .
3. Consider the matrix $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Which of the following statements are true?
(a) X is an identity. \boldsymbol{X}
(b) X is symmetric. \boldsymbol{V}
(c) X is diagonal. \boldsymbol{X}
(d) X is positive semi-definite.
(e) X is unitary.
(f) X is hermitian.
a) The 2×2 identity matrix is $11=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, not x.
b) Yes, because $X^{\top}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=X$.
C) No, we have non-zero nondiagonal terms.
d) Positive semi-derinity matrix has all eigenvalues larger or equal to 0 and real. The eigenvalues of X are 1 and -1. Because of -1 , it is not positive semi-detinite
e) We can use the fact that a matrix is unitary if curd only if its eigenvalues all have magnitude i which x hos. or we can notice that $x^{-1}=x^{+}=X \quad(x \cdot x=11)$ therefore it is cunideng.
f) Every symmetric matrix is Hermitian. X sutisties $x^{+}=X$.
the
4. Write the operator $X \otimes I$ as a 4×4 matrix in computational basis.
5. Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$.
(a) Compute A^{2}
(b) What are A's eigenvalues?

$$
\begin{aligned}
& A^{2}=A \cdot A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \\
& A-x \mathbb{1}=\left(\begin{array}{cc}
1-2 & 1 \\
1 & -x
\end{array}\right) \\
& \operatorname{det}(A-1-1)=0 \\
& (1-x)(-x)-1=0 \\
& -x+x^{2}-1=0 \\
& \lambda=\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

The eigenvalues
are $1 \pm \sqrt{5}$

$$
\begin{aligned}
\times 11= & (|0 \times 1|+\mid 1 \times 01) 0(10 \times 0|+| 1 \times 11) \\
= & |00 \times 10|+|01 \times 11|+ \\
& |10 \times 00|+|11 \times 01|
\end{aligned}
$$

Each of this 4 terms corresponds to a non-zero matrix element

$$
x \propto 1=\left(\begin{array}{ll:ll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\hdashline 1 & 0 & 1 & 0 \\
0 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

We could also examine how the operator transforms basis states:

$$
\begin{aligned}
& x \odot 1||00\rangle=| 10\rangle \\
& x \propto 1||01\rangle=| \begin{array}{ll}
1 & 1
\end{array} \\
& x \odot 11|10\rangle=|00\rangle \\
& x \odot 11|11\rangle=\left\lvert\, \begin{array}{ll}
0 & 1
\end{array}\right.
\end{aligned}
$$

The third approach is to write $x=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and al $=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and perform the tensor procluct. All approaches lead to the same answer.

